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Chapter 5

Boundary layer turbulence

Turbulence in the ocean and atmosphere is strongly affected by the presence of bound-
aries. Boundaries impose severe modifications to the momentum and buoyancy bud-
gets. At solid boundaries, the boundary condition that the fluid velocity is zero
applies to both the mean velocity and to the fluctuations. Thus the turbulent fluxes
of momentum must vanish. At the ocean free surface winds apply a stress that
drives strongly turbulent motions. Finally, fluxes of heat, salt, and moisture at the
boundaries can generate vigorous turbulent convection. Before discussing in detail
the physics of planetary boundary layers in the ocean and atmosphere, it is useful to
review some fundamental results that apply to stratified turbulence in general.

5.1 Turbulence in stratified fluids

In the previous lectures we studied the effect of stratification on oceanic macro-
turbulence, i.e. on turbulent motions with length and time scales large enough that
rotation was important. In this limit motions have time to come in geostrophic bal-
ance with the density field and vertical velocities are strongly suppressed. The situa-
tion is quite different at the atmosphere and ocean boundaries, because surface fluxes
continuously upset the gesotrophic balance and vertical motions are vigorous. In this
lecture we first review the basics of stratified turbulence at scales where rotation is
not important. Then we use the results to discuss boundary layer turbulence.

5.2 Mixing of stratified fluids

See Benoit Cushman-Roisin, section 11-1.
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5.3 Turbulence in a stratified shear flow

Let us consider shear-driven turbulence at solid boundaries. At flluid boundaries,
the condition that the fluid velocity is zero applies at every instant in time. Thus it
applies to the mean velocity and the fluctuations separately,

ū = 0, u′ = 0. (5.1)

The fact that the fluctuations drop to zero at the wall has the particular implication
that the Reynolds stress vanish,

−uiuj = 0. (5.2)

The only stress exerted directly on the wall is the viscous one. Away from the wall,
instead, turbulence generates a Reynolds stress typically large compared to the viscous
stress. Tritton (chapter 5, page 337) shows in Figure 21.12 the transition between
a viscous stress and a turbulent stress in a turbulent boundary layer experiment
(Schubauer, J. Appl. Physics, 1954). The total stress parallel to the wall does not
change with distance from the wall, but there is an exchange of balance between the
viscous and turbulent contributions.

To simplify the algebra let us consider a parallel irrotational flow over a flat boundary.
Turbulence is generated because the no-slip condition ū = 0 at the boundary means
that a shear layer results, and vorticity is introduced into the flow. Without loss
of generality we can assume a constant background flow ū0, which is independent
of distance along the plate x and distance normal to the plate z. We also restrict
the analysis to 2-dimensional flows, i.e. ∂/∂y = 0, and assume that downstream
evolution is slow. If L is a streamwise lengthscale, we are assuming that L is much
larger than the viscous sublayer width across which the flow goes to zero δ/L << 1,
so that we can neglect variations in the streamwise direction compared to those in
the vertical for averaged variables (i.e. ∂/∂x = 0). Given these assumptions, the
Reynolds averaged equations become,

w̄
dū

dz
=

d

dz

(
ν
dū

dz
− w′u′

)
,

dw̄

dz
= 0. (5.3)

Because of the no normal flow through the boundary, we have w̄ = w′ = 0 at z = 0,
the bottom boundary. Then from eq. (5.3b) w̄ = 0 for all z. Then eq. (5.3a) becomes,

d

dz

(
ν
dū

dz
− w′u′

)
= 0. (5.4)

Hence if we have a stress τ given by,

τ = ν
dū

dz
− w′u′ =

(
ν
dū

dz

)
z=0

, (5.5)
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this stress is constant throughout the boundary layer. Near the boundary the stress
is dominated by the viscous term. Away from the boundary we will have,

τ = −w′u′. (5.6)

We can define a velocity scale from this surface stress

u2
∗ = τ, (5.7)

where u∗ is the friction velocity. Away from the boundary eq. (5.6) implies that
u∗ is the turbulent velocity fluctuation magnitude.

Further reading: Tritton, chapter 21, 336–344 and Cushman-Roisan, section 11-3.

5.4 Convection

Convection is the process by which vertical motions modify the buoyancy distribution
in a fluid. In the example considered above, the mixing of the upper ocean layer is
caused by the mechanical action of the wind stress, and convection is said to be
forced. Free convection arises when the only source of energy is of thermodynamic
origin, such as an imposed heat flux. A common occurrence of free convection in
geophysical fluids is the development of an unstable atmospheric boundary layer.

Kerry and Glenn showed that free convection occurs when the Rayleigh number Ra,

Ra =
∆bh3

νκT

, (5.8)

exceeds a critical value, which depends on the nature of the boundary conditions. For
a fluid confined between two rigid plates and maintained at different tempertures at
the two plates, the critical Rayleigh number is Ra = 1708. At values slightly over the
threshold, convection organizes itself in parallel two dimensional rolls or in packed
hexagonal cells. At higher values of the Rayleigh number, erratic time dependent
motions develop, and convection appears much less organized.

Geophysical flows almost always fall in this last category, because of the large depths
involved and the small values of molecular viscosity and diffusivity of air and water.
In the atmospheric and oceanic boundary layer, where the Rayleigh number easily ex-
ceeds 1015, convection is manifestly turbulent and viscosity/diffusivity play secondary
roles. In this limit, the usntably-stratified part of the water column mixes to become
essentially uniform. For fixed buoyancy boundary conditions, thin layers develop near
the boundaries with thickness such that the local Rayleigh number is nearly critical.
if the flux of buoyancy is fixed, these layers do not occur and the buoyancy gradient
decreases to small values.
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5.5 Ocean Mixed Layer Models

5.5.1 Bulk Mixed Layer Models: Price Weller and Pinkel
Model

Price, Weller, and Pinkel (PWP) proposed a simplified boundary layer model for the
upper ocean. The model is based on simple heuristic arguments and has proved quite
accurate. The model adjusts the distributions of momentum and tracer properties,
and in doing that it sets the mixed layer depth. The internal workings are rather
simple. After adding the surface forcing, one applies three criteria for vertical sta-
bility (i.e. whether water should mix vertically, and whether the mixed layer should
deepen). After that, it applies advection and diffusion (vertical advection and vertical
diffusion) to the water column.

Static Stability Criterion

The first stability criterion, and the one that proves the most important in the model,
is static stability. In fact, it accounts for about 80% of the ”action”. Quite simply
put, one cannot have denser water overlying lighter water. This means that one must
have ∂z b̄ ≥ 0. Thus one goes through the model domain (let ”i” be the position
index, with “i” increasing downward), one tests to make sure that,

b̄i ≤ b̄i+1, (5.9)

and where this is not the case, one then mixes all the cells above this depth (that is
average them among themselves). In general, what one should really do is to just mix
the two cells together, then start from the top of the model and do it again. What
happens in practice, however, is since all the heat exchange (in particular cooling,
which decreases buoyancy) takes place at the top of the model, one always finds that
the effect of this instability is to mix all the way back to the top. So one may as
well do it the first time. This scheme is equivalent to the convective overturning
scheme described above, if one sets the diffusivity to infinity whenever there is static
instability.

Bulk Richardson Number Stability Criterion

The second stability criterion is the bulk Richardson Number stability. This arises
due to the fact that if the mixed layer gets going too fast (i.e. the wind stress is
allowed to accelerate it to too great a speed), it tends to ”stumble” over itself. What
actually happens is that if there is too much velocity shear at the base of the mixed
layer, it will tend to mix downward. This effect, determined by field and laboratory
experiments is such that the mixed layer deepens if the bulk Richardson number goes
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below a critical value,

Rb =
h ∆b̄

|∆ū|2
≥ 0.65, (5.10)

where h is the height (thickness) of the mixed layer, ∆b̄ is the buoyancy contrast
between the mixed layer and the water below, and ∆ū is the difference in horizontal
velocity between the mixed layer and the underlying water. This effect tends to
be important when the mixed layer becomes very thin, because a thin mixed layer
becomes easily accelerated by wind stress, and the inverse quadratic nature of the
dependence makes for a strong damping. The relative activity of this process is about
20% of the static instability.

Gradient Richardson Number Stability Criterion

The third stability criterion is based on the gradient Richardson number, and has
the effect of stirring together layers where the velocity gradient becomes too great.
One can think of this as the mixed layer ”rubbing” against the water underneath
it. This largely has the effect of blurring the transition between the mixed layer and
the seasonal thermocline below, which would normally be rather sharp. Laboratory
experiments indicate that there is a critical gradient Richardson number, below which
stirring occurs,

Rg =
∂z b̄

|∂zū|2
≥ 0.25. (5.11)

This turns out to be a not very vigorous process, but becomes a little more important
in the absence of any explicit turbulent vertical diffusion. Notice that the gradient
Richardson number introduced by Price, Weller, and Pinkel differs from the one used
in KPP in that it does not include any parameterization for unresolved turbulent
shear.

5.6 K-Profile Parameterization (KPP)

This boundary layer scheme due to Large, McWilliams and Doney (1994), is based
on boundary layer theory and prescribes a profile of eddy diffusivities as a function
of depth relative to the total oceanic boundary layer depth. The vertical profiles
are based on the results from Prandtl boundary layer model and its corrections to
include buoyancy forcing. The model is developed for the ocean. It accounts for both
wind-stirring and convection. The main controlling parameter is σ = z/h, where z is
the distance from the surface, and h is the depth of the boundary layer. Other con-
trolling parameters are the surface fluxes of momentum and buoyancy, τ0 and w′b′0,
the Monin-Obukhov length-scale Lb, and the nondimensional ratio ζ = d/Lb.

5



Non-local closure

All of the methods we have discussed thus far for parameterizing the turbulent fluxes
of heat and momentum involve local closures - i.e. a relationship between the
local values of the large scale gradient and the turbulent flux. However there can be
situations in which a local relationship does not exist, because the local fluxes are
generated by instabilities at a different location or time, and therefore are not related
to the local mean gradients. In general it is difficult to deal with these situations, but
there are some cases for which non-local closures can be derived. KPP incorporates
a nonlocal closure. The vertical fluxes are parameterized as,

w′x′ = −Kx

(
∂x̄

∂z
− γx

)
(5.12)

where γx is the nonlocal flux term. Nonlocal fluxes of scalars are important in convec-
tive boundary layers, i.e. when buoyant production is the dominant source of TKE.
Then scalars are largely homogenized over the convective layer, but fluxes are still
finite. γx is set to zero when there is no buoyant convection (w′b′0 ≤ 0), but is nonzero
for scalars when w′b′0 > 0,

γx = Cs
w′x′

0

w(σ)h
(5.13)

Here w′x′
0 is the surface tracer loss. The vertical velocity scale w(σ) depends on

position within the boundary layer (i.e. whether or not σh is greater than or smaller
than the Monin-Obukhov lengthscale). In the convective limit (h � Lb) then,

γx = C∗w′x′
0

w∗h
, (5.14)

where w∗ is the convective velocity scale,

w∗ ∼ (w′b′0h)1/3, (5.15)

w′b′0 is the surface flux, and C∗ = 10.

Kx, the turbulent diffusivity, is given as a function of the depth of the turbulent
boundary layer h (which is diagnosed from the mean density field), the turbulent
velocity scale w, and a non-dimensional shape function G(σ), where σ = z/h,

Kx(σ) = hwx(σ)G(σ) (5.16)

This is of a similar form to eq.(??), but now wx(σ) is determined diagnostically, and
the turbulent lengthscale is a function of position within the boundary layer, and
scales with h, the depth of the boundary layer. The shape function G(σ) is assumed
to be a cubic polynomial,

G(σ) = σ + a2σ
2 + a3σ

3, (5.17)
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with a2, a3 constants.

Substituting in eq.(5.12) we see that in the convective limit (dx̄/dz = 0), the tracer
flux is given by,

w′x′ = C∗w′x′
0G(σ) (5.18)

so that the flux is proportional to the surface flux, scaled by a function of the position
within the mixed layer.

Wind-stirred limit

Following boundary layer theory, the velocity profiles wx(σ) are given by,

wx(σ) =
κu∗

φ(ζ)
(5.19)

where φ(ζ) is the self-similar function introduced in the previous lecture to account for
buoyancy effects on shear-driven turbulence. Let’s consider the momentum budget.
In the surface layer, σ < 0.1, where similarity theory applies we have,

w′u′ = u2
∗ = −hwu(σ)G(σ)

dū

dz
= −hσ

κu∗

φ(ζ)

dū

dz
, (5.20)

which gives the logarithmic layer profile,

dū

dz
=

u∗

κz
φ(ζ). (5.21)

Then in the surface layer the diffusivity/viscosity is given by,

Kx(σ) =
κu∗z

φ(z)
. (5.22)

Boundary layer depth

One of the most important aspects of KPP is the dependence of parameters on the
total boundary layer depth. This adds another non-local aspect to the parameter-
ization. The boundary layer depth is determined as the location where the bulk
Richardson number exceeds some critical value (0.3), with the Richardson number
Ri(z) defined as

Ri(z) =
[b̄(0)− b̄(z)] z

|ū(0)− ū(z)|2 + |ut(z)|2
. (5.23)

ū(0) and b̄(0) are the near surface resolved velocity and buoyancy (averaged over the
surface layer, the top 10% of the boundary layer). ut/z is the turbulent shear, which
has to be parameterized. This ut term is very important, because it reduces the Ri
and hence extends the depth of the boundary layer over which enhanced diffusivities
are applied into the stably stratified region. If ut is set to zero, then KPP does not
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reproduce penetrative convection. The value of ut depends on the ratio of the reverse
(penetrative) buoyancy flux at the base of the convective layer to the forcing w′b′0,
which is known empirically to be 0.2.

For stable forcing w′b′0 < 0, so that Lb > 0, upper limits are imposed on the boundary
layer depth,

h < Lb, and h < hE = 0.7u∗/f, (5.24)

where hE is the Ekman layer depth.

Momentum versus tracers

Momentum and tracer fluxes are parameterized in a similar fashion in KPP except
for the following,

• φ > φx when Lb < 0 (i.e. convective forcing), so that tracers are mixed more
efficiently than momentum.

• γm = 0 - no counter-gradient fluxes of momentum in convective scenarios.
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