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Chapter 2

A statistical description of
turbulence

The evolution of turbulent flows is very complex. Turbulent flows appear highly dis-
organized with structure at all scales. Signals appear unpredictable in their detailed
behavior. However some statistical properties of the flow can be quite reproducible.
This suggests that it can be useful to seek a statistical description of turbulent flows.
A statistical measure is an average of some kind: over the symmetry coordinates,
if any are available (e.g, a time average for stationary flows); over multiple realiza-
tions (e.g, an ensemble); or over the phase space of solutions if the dynamics are
homogeneous.

A similar behavior is observed in simple deterministic maps. Frisch, is chapter 3
of his book Turbulence, provides examples of deterministic maps that are chaotic
and not predictable in their detailed properties, but whose statistical properties are
reproducible, just like for turbulent flows.

Thus it seems quite appropriate to introduce a probabilistic description of turbulence.
However we know that the basic Boussinesq equations are deterministic. How can
chance and chaos arise in a purely deterministic context? A nice discussion of this
issue can be found, once more, in chapter 3 of Frisch’s book.

Ilya Prigogine has in recent years brought about a radical change of perspective.
The statistical description of turbulence is not merely a convenience to describe the
excessive amount of information contained in the fluid. Turbulence is intrinsically
stochastic. The argument goes that single trajectories of fluid parcels in phase space
are deterministic, but a fluid composed by a large ensemble of parcels is not. All
parcels interact in a such a way that information is continuously spread, and the
ensemble evolves toward a collective state that can be defined only statistically (like
thermodynamics). This description suggests that irreversibility appears in nature as
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a result of the statistical behavior of parcel interactions.

Even though Frisch (and most of the scientific community) and Prigogine disagree
in their explanation of why a statistical description of turbulence is appropriate, it
is clear that they both agree that turbulence and statistics go hand in hand. Thus
we will spend the rest of this lecture to review the statistical tools that we need to
describe turbulent flows.

2.0.1 The poor man’s Navier-Stokes map

Following Frisch we introduce a discrete map that mimics some of the properties of
the Navier-Stokes equations: the poor man’s Navier-Stokes equation. The analogy is
most apparent if we discretize the Navier-Stokes equation in time,

vn+1 − vn
τ

︸ ︷︷ ︸

vt

= − v2
n

λ
︸︷︷︸

−u·∇u+∇p

− ν
vn
λ2

︸︷︷︸

+ν∇2u

+f. (2.1)

With appropriate choice of time step τ , length scale λ, friction ν, and forcing f , we
can reduce the map to,

vn+1 = −2v2
n + 1. (2.2)

This map displays broadband spectrum in time, nonlinearity, unpredictable behavior,
and time reversibility (Fig. 2.1). However it is derived assuming a specific lengthscale
λ and it cannot display any spatial structure. Thus the poor man’s Navier-Stokes
equation cannot display turbulent behavior. However it is a useful tool to study how
a deterministic system can produce chaos and unpredictable behavior. Properties of
this map are:

• the signal is very disorganized

• trajectories are unpredictable

• histogram of positions is quite reproducible

2.0.2 The poor man’s linear Navier-Stokes equation

We also consider a linear version of the poor man’s Navier-Stokes equation,

vn+1 = −1

2
vn + 1. (2.3)

Properties of this map are:
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Figure 2.1: Trajectories and histograms for the poor man’s Navier-Stokes equation .
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Figure 2.2: Trajectories and histograms for the poor man’s linear Navier-Stokes equa-
tion.

• the signal is very organized

• trajectories are predictable

• histogram of positions and trajectories are complementary descriptions

In this map all trajectories collapse to a fixed point v = 2/3. The histogram collapses
to a spike centered at v = 2/3.

2.0.3 Trajectory and histograms of maps

The two previous examples suggest that the histograms and trajectories contain
the same information for the linear map. However in the nonlinear map the his-
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Figure 2.3: The evolution of the histograms for the histograms for the poor man’s
linear Navier-Stokes equation and the poor man’s Navier-Stokes equation .

tograms show a predictability that does not emerge in individual trajectories. The
histogram always converge toward the uniform distribution, regardless of initial con-
ditions (Fig. 2.3). Why does the histogram of the poor man’s Navier-Stokes equation
converge to a limit solution? Why a deterministic system such as a map has a reg-
ular statistical behavior? We do not have complete answers to these equations, but
progress is being made. The current understanding is that as time progresses the
trajectory explores the whole phase space and gathers information about all other
trajectories. Thus information is continuously spread, and the ensemble evolves to-
ward a collective state that can be defined only statistically.

2.0.4 A probabilistic description of maps

In this section we derive a statistical description of the maps we considered. The
goal is to understand the difference between the trajectory-based description and the
histogram-based description. First we need to determine the histogram P (v), also
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known as the probability distribution function, so that we can observe the recurrence
relation Pn+1(v) = UPn(v). The distribution function Pn+1(v) after n+1 iterations is
obtained by the action of the operator U on Pn(v), which is the distribution function
after n iteration of the map. The operator U acts on functions and it is known as the
Perron-Frobenius operator.

We can derive the Perron-Frobenius operator for the poor man’s linear Navier-Stokes
map. Simple algebra gives,

vn+1 = 1− vn ⇐⇒ Pn+1(v) = 2Pn (2− 2v) . (2.4)

Equilibrium solutions correspond to probability functions that do not change under
the action of the map, i.e. Pn+1(v) = Pn(v). For the poor man’s linear Navier-Stokes
map the only stationary solution is a Dirac delta function centered at 2/3. This is
equivalent to the result that all trajectories collapse to v = 2/3. No new information
is gained by looking at the probability distribution.

In order to derive the Perron-Frobenius operator for poor man’s Navier-Stokes map,
it is useful to simplify the map through a change of variables,

vn = sin
(

πxn −
π

2

)

, 0 ≤ xn ≤ 1, (2.5)

and similarly Navier-Stokes map to a simpler map. Let us make the following change
of variable,

vn+1 = sin
(

πxn+1 −
π

2

)

, 0 ≤ xn ≤ 1, (2.6)

It is left as an exercise to prove that the map for xn is,

xn+1 =

{

2xn, 0 ≤ xn ≤ 1/2
2− 2xn, 1/2 ≤ xn ≤ 1

(2.7)

This is known as the tent map, because of the shape of its graph. It is now easy
to understand why this map displays sensitive dependence on initial conditions. See
Frisch’s book for details.

We can write the Perron-Frobenius operator for the tent map,

Pn+1(v) =
1

2

[

Pn

(
v

2

)

+ Pn

(

1− v

2

)]

. (2.8)

As a consequence of the form of the Perron-Frobenius operator, if Pn is constant
equal to P0, then Pn+1 is also equal to P0. The uniform distribution P = P0 is
the equilibrium distribution. The uniform distribution is indeed the final state that
one obtains by running numerical integrations of the tent map. Thus the statistical
description predicts a result that cannot be derived from simple inspection of the
deterministic equation.
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How do we know that the equilibrium distribution is obtained for any set of initial
conditions? In order to solve arbitrary initial value problems, we need the full set of
eigenfunctions and eigenvalues of the Perron-Frobenius operator. These eigenfunc-
tions can be used to represent any arbitrary initial condition. The eigenfunctions for
the tent map belong to a family of polynomials called the Bernoulli polynomials. The
eigenfunctions are found by solving the problem,

P (v) = λ UP (v). (2.9)

In the example of the tent map, we find that the eigenfunctions have λ ≤ 1. For
example an eigenfunction is given by,

P (v) = v2 − 2v +
2

3
. (2.10)

This eigenfunction has an eigenvalues λ = 1/4. The uniform distribution P = 1 is
the only eigenfunction with eigenvalue λ = 1. Thus all eigenfunctions other than
the uniform distribution decay in time. And the uniform distribution emerges as the
asymptotic state.

It is left as an exercise to relate the probability distribution of the tent map to that
of the poor man’s Navier-Stokes map, and show that it correctly predicts what we
found by numerical integrations of the map.

2.0.5 Shortcoming of the poor man’s Navier-Stokes analogy

The poor man’s Navier-Stokes map is a useful tool to illustrate some important char-
acteristics of turbulent flows. However this tool is pathological in at least two ways,

• The poor man’s Navier-Stokes map explores the full available space [−1, 1].
Typically turbulent systems are dissipative and collapse on an attractor with
fractal structure (at least for finite-dimensional systems).

• Natural systems tend to have more than one attractor. Thus the equilibrium
statistical properties are not fully predictable.

Furthermore there are technical issues that have not been solved for the Navier-
Stokes equations. We do not know if solutions exist for all times for arbitrary initial
condition. We do not know how to write the equivalent of the Perron-Frobenius
operator.
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2.1 Probability density functions and moments

A complete description of a turbulent variable v at a given location and instant in
time is given by the probability density function (PDF), P (v), where P (v)dv is
the probability of the variable v taking a value between v and v + dv, and

∫ +∞

−∞
P (v)dv = 1. (2.11)

The PDF can be estimated by constructing a histogram of an ensemble of measure-
ments of v at the specified location, repeating the experiment time and time again.
The larger the ensemble (i.e. the more times the experiment is repeated), the more
closely the histogram will approximate the PDF.

Themoments of the variable v are derived from the PDF. The n-th moment < vm >
is defined as

< vn >=
∫ +∞

−∞
vnP (v)dv (2.12)

The first moment < v > is the mean:

< v >=
∫ +∞

−∞
vP (v)dv (2.13)

The variance is the second moment of the perturbation quantity v ′ = v− < v >,
and describes the level of variability about this mean.

< v′2 >=
∫ +∞

−∞
(v− < v >)2P (v)dv (2.14)

The skewness is the third moment of v′, normalized by the variance:

skewness =
< v′3 >

< v′2 >3/2
(2.15)

A PDF which is symmetric about the mean < v > will have zero skewness. All higher
odd moments of such a symmetric PDF will also be identically zero. The skewness
reveals information about the asymmetry of the PDF. Positive skewness indicates
that the PDF has a longer tail for v− 〈v〉 > 0 than for v− 〈v〉 < 0. Hence a positive
skewness means that variable v′ is more likely to take on large positive values than
large negative values. A time series with long stretches of small negative values and
a few instances of large positive values, with zero time mean, has positive skewness
(Fig. 2.4).

The kurtosis (or flatness) is the fourth moment of v′, normalized by the variance:

kurtosis =
< v′4 >

< v′2 >2
(2.16)
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Figure 2.4: Signal with a positive skewness.

A PDF with longer tails will have a larger kurtosis than a PDF with narrower tails.
A time series with most measurements clustered around the mean has low kurtosis,
a time series dominated by intermittent extreme events has high kurtosis (Fig. 2.5).

The characteristic function P̂ (k) is the Fourier transform of the PDF,

P̂ (k) =
∫ +∞

−∞
eikvP (v)dv =< eikv > . (2.17)

The characteristic function of the sum of two independent variables is the product of
their individual characteristic functions.

If we take the derivative of the above equation with respect to k and evaluate it at
the origin (k = 0) we see that the n-th moment is related to the derivatives of the
characteristic function by,

dnP̂ (k)

dkn

∣
∣
∣
∣
∣
k=0

= in < vn >, (2.18)

where i =
√
−1. Then the characteristic function can be written as a Taylor series of

the moments,

P̂ (k) =
∞∑

n=0

1

n!

dnP̂ (k)

dkn

∣
∣
∣
∣
∣
k=0

kn =
∞∑

n=0

(ik)n

n!
< vn > . (2.19)
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Figure 2.5: Signal with a large kurtosis.
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2.2 Joint probability density functions

Turbulence, of course, involves not one, but several random variables dependent on
each other. Therefore, it is necessary to define joint probability density functions
(JPDF). For example the JPDF PJ(u, v) of variables u and v is the probability of
finding the first random variable between u and u+ du, and the second one between
v and v + dv. The integral of PJ over the u,v two-dimensional space is unity by
definition,

∫ ∞

0

∫ ∞

−∞
PJ(u, v) du dv = 1, (2.20)

and PJ(u, v) is positive definite. We recover the PDF of u by integrating PJ over all
values of v, and the PDF of v by integrating over all values of u,

P (u) =
∫ ∞

−∞
PJ(u, v) dv, P (v) =

∫ ∞

−∞
PJ(u, v) du. (2.21)

The moments of u and v can therefore be obtained from PJ as well. The joint first
moment of u and v, 〈uv〉, is defined as,

〈uv〉 =
∫ ∞

−∞

∫ ∞

−∞
uv PJ(u, v) du dv. (2.22)

The covariance of u and v is defined as,

C(u, v) = 〈uv〉 − 〈u〉〈v〉 = 〈u′v′〉. (2.23)

The covariance of u and v normalized by the rms values of u and v (the square roots
of their variances) is called the correlation function r(u, v) and is used to quantify
the degree of correlation between u and v,

r(u, v) =
〈u′v′〉

√

〈u′2〉
√

〈v′2〉
. (2.24)

For perfectly correlated variables, the correlation function is ±1. The covariance is a
measure of the asymmetry of the JPDF.

Two variables whose covariance is zero, or equivalently whose correlation is zero,
are said to be uncorrelated. Notice that two uncorrelated variables need not to be
independent. Statistical independence of two variables requires that the JPDF can
be expressed as the product of the individual PDFs,

PJ(u, v) = P (u)P (v). (2.25)

Thus independent variables are uncorrelated, but the reverse is not true.
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These concepts can be extended to three or more variables, but it is rarely the case
that one has enough information about the statistics of a flow to measure quantities
like PJ(u, v, w).

While PDFs and JPDFs are fundamental to theories of turbulence, one seldom mea-
sures or use such quantities. Most often, only the first and the second moments are
used to characterize the turbulent flow. Particular importance is given to covariances,
which appear in the problem of Reynolds averaging and will be discussed at the end
of this lecture.

2.3 Ergodicity and statistical symmetries

Computing ensemble means is a daunting task when dealing with laboratory experi-
ments or numerical simulations, because it requires to repeat experiments or numerical
runs over and over. In the case of geophysical flows, the situations is even worse; we
cannot ask nature to repeat weather patterns in order to compute our means. Does
it mean that a statistical description of turbulence is a nice theoretical idea with
no practical relevance? Fortunately not, because we can estimate ensemble means
through time and spatial means, under certain assumptions.

• Stationarity
Turbulence is stationary if all mean quantities (e.g. < v >, < vn > etc) are
invariant under a translation in time. A stationary variable v is ergodic if the
time average of v converges to the mean < v > as the time interval extends to
infinity,

1

T

∫ T

0

v(t)dt =< v > as T →∞. (2.26)

(See Frisch, 4.4 for a detailed discussion of ergodicity). In this case a time
average is equivalent to an ensemble average.

• Homogeneity
Turbulence is homogeneous if all the mean quantities are invariant under any
spatial translation. Then an ergodic hypothesis allows an ensemble average to
be calculated as a spatial average,

1

L

∫ L

0

v(x)dx =< v > as L→∞. (2.27)

• Isotropy
Turbulence is isotropic if all the mean quantities are invariant under any ar-
bitrary rotation of coordinates.
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• Axisymmetry
Turbulence is axisymmetric if all the mean quantities are invariant under a
rotation about one particular axis only (e.g. the z axis for stratified turbulence).

Stationary, isotropic, homogeneous statistics are frequently assumed in theories of
turbulence, but are in fact rare in geophysical contexts where stratification and Cori-
olis break the symmetry with respect to rotation, boundaries break the symmetry
with respect to translation, and seasonal and diurnal forcing break the symmetry
with respect to time-shifts. However less restrictive assumptions, to be described in
the rest of this class, allow progress to be made.

2.4 Central Limit Theorem

Many quantities in turbulence can be thought of as a sum of random variables. For
example a net particle displacement in a turbulent flow may be thought as the sum
of N random displacements by small eddies; a net velocity may be thought as the
sum of N random velocity increments. If we assume the incremental changes xn all
have the same unknown PDF and zero mean value, then the net change in variable
is given by,

z =
N∑

n=1

xn. (2.28)

If all the individual incremental changes are independent and uncorrelated with PDF
P (x), the variance of z is given by,

z2 =
N∑

n=1

N∑

m=1

< xnxm >= Nσ2, (2.29)

where σ2 is the variance of all the xn. (Notice that we are assuming that σ2 is finite.
This is not always the case as for example for power-law PDFs).

The variance of z increases with the size of the ensemble N . As it turns out, it is
more convenient to work in terms of the variable u = N−1/2z, which has variance σ2

for all N . We can now determine the PDF of u.

The characteristic function of P (u) is given by

P̂u(k) =< eiku >= 〈eik/N1/2
∑N

n=1
xn〉 = (P̂ (kN−1/2))N . (2.30)

We can expand P̂ (kN−1/2) as shown in (2.19),

P̂ (kN−1/2) = 1− k2σ2

2N
+O(k3N−3/2). (2.31)
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For large N we obtain the characteristic function of the sum:

P̂u(k) = lim
N→∞

(1− k2σ2/2N)N = e−k2σ2/2. (2.32)

The corresponding PDF is

P (u) =
1

(2πσ2)1/2
e−u2/2σ2

, (2.33)

i.e. a Gaussian PDF. Therefore the sum of a large number of identically distributed
independent variables has a Gaussian PDF, regardless of the shape of the PDF of the
variables themselves. This result is known as the central limit theorem.

The sum, normalized by 1/
√
N , of N random, independent and identically

distributed variables of zero mean and finite variance, σ2, is a random

variable with a PDF converging to a Gaussian distribution with variance

σ2.

It is important to remember the conditions under which this statement holds: the
individual variables must be independent; N must be large; the variance σ2 of the
PDFs of the individual variables must be finite.

The central limit theorem is most useful as a starting point, because deviations from
Gaussian PDFs indicate that some of the assumptions discussed above are broken.
This happens often in turbulent flows.

2.5 Intermittency

A signal is said to be intermittent if rare events of large magnitude are separated by
long periods with events of low magnitude. Spatial intermittency implies that the
signal displays localized regions with events of large magnitude, and wide areas with
events of low magnitude. PDFs of intermittent flows are not Gaussian. If turbulence
is dominated by coherent structures localized in space and time, then PDFs are not
Gaussian. Flows characterized by intermittency are not self-similar.

(Further reading: Tennekes and Lumley, Ch 6; Lesieur, Ch 5; Frisch, Ch 3, Ch 4, and
Ch 8 for more on intermittency).

2.6 The Closure Problem

Although it is impossible to predict the detailed motion of each eddy in a turbulent
flow, the mean state may not be changing. For example, consider the weather sys-
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tem, in which the storms, anti-cyclones, hurricanes, fronts etc. constitute the eddies.
Although we cannot predict these very well, we certainly have some skill at predict-
ing their mean state, the climate. For example, we know that next summer will be
warmer than next winter, and that in California summer will be drier than winter.
We know that next year it will be colder in Canada than in Mexico, although there
might be an occasional day when this is not so. We would obviously like to be able
to predict the mean climate without necessarily trying to predict or even simulate
all the eddies. We might like to know what the climate will be like one hundred
years from now, without trying to know what the weather will be like on February
9, 2056, plainly an impossible task. Even though we know what equations determine
the system, this task proves to be very difficult because the equations are nonlinear.
This is the same problem we discussed at the beginning of the lecture. We seek a
statistical description of the turbulent flow, because a detailed description is beyond
our grasp. The simplest statistical quantity we might try to predict is the mean
flow. However, because of the nonlinearities in the equations, we come up against the
closure problem.

The program is to first decompose the velocity field into mean and fluctuating com-
ponents,

u = ū+ u′. (2.34)

Here u is the mean velocity field, and u′ is the deviation from that mean. The mean
may be a time average, in which case ū is a function only of space and not time.
It might be a time mean over a finite period (e.g a season if we are dealing with
the weather). Most generally it is an ensemble mean. Note that the average of the
deviation is, by definition, zero; that is u′ = 0. We then substitute into the momentum
equation and try to obtain a closed equation for u. To visualize the problem most
simply, we carry out this program for a model nonlinear system proposed by Geoff
Vallis (http://www.princeton.edu/ gkv/aofd.pdf) which obeys,

du

dt
+ uu+ νu = 0. (2.35)

The average of this equation is,

dū

dt
+ uu+ νū = 0. (2.36)

The value of the term uu is not deducible simply by knowing ū, since it involves
correlations between eddy quantities u′u′. That is, uu = ūū + u′u′ 6= ūū. We can go
to next order to try to obtain a value for uu. First multiply (2.35) by u to obtain an
equation for u2 , and then average it to yield,

1

2

duu

dt
+ uuu+ νuu = 0. (2.37)

This equation contains the undetermined cubic term uuu. An equation determining
this would contain a quartic term, and so on in an unclosed hierarchy. Most current
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methods of closing the hierarchy make assumptions about the relationship of (n+1)-th
order terms to n-th order terms, for example by supposing that,

uuuu = uu uu− αuuu, (2.38)

where α is some parameter. Such assumptions require additional, and sometimes
dubious, reasoning. Nobody has been able to close the system without introducing
physical assumptions not directly deducible from the equations of motion.

2.7 The Reynolds equations

Let us repeat the averaging procedure for the full Boussinesq equations. We start
with the momentum equations,

∂ū

∂t
+ (ū · ∇)ū + f ẑ × ū = b̄ẑ − 1

ρ0

∇p̄+ ν∇2
ū− (u′ · ∇)u′, (2.39)

The extra term on the right hand side represent the effect of eddy motions on the
mean flow. If the average operator is a time average over some time T , then eddy
motions are those motions with time scales shorter than T . If the average operator is
a spatial average over some scale L, then eddy motions are those motions with spatial
scales shorter than L. If the average operator is an ensemble mean, then the eddy
motions are those motions that change in every realizations, regardless of their scale,
i.e. they represent the unpredictable or turbulent part of the flow.

Using the continuity equation,

∇ · u = 0 ⇒ ∇ · ū = 0 and ∇ · u′ = 0, (2.40)

we can rewrite the averaged momentum equation as,

∂ū

∂t
+ (ū · ∇)ū + f ẑ × ū = b̄ẑ − 1

ρ0

∇ ·
[

p̄I− ρ0ν∇ū + ρ0u
′
u

′
]

. (2.41)

I is th unit matrix. These are the so-called Reynolds momentum equation and
the eddy flux ρ0u

′
u

′ represent the Reynolds stress tensor due to fluctuations in
velocity filed.

We can similarly decompose the buoyancy equation into a mean and a fluctuating
component, b = b̄+b′, and write an equation for the mean component by substituting
back into the buoyancy equation,

∂b̄

∂t
+ (ū · ∇)b̄ = −∇ ·

[

−κ∇b̄+ u
′b′

]

. (2.42)
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The eddy term u
′b′ represent the Reynolds eddy flux of buoyancy.

The problem of turbulence is often that of finding a representation of such Reynolds
stress and flux terms in terms of mean flow quantities. However, it is not at all clear
that a general solution (or parameterization) exists, short of computing the terms
explicitly.

2.8 Eddy viscosity and eddy diffusivity

The simplest closure for the Reynolds stress terms is one which relates u
′
u

′ to the
mean flow, by assuming a relation of the form,

u
′
u

′ = −νT∇ū, (2.43)

where νT is the eddy viscosity. With such a closure the Reynolds stress term
takes the same form as the mean viscosity term, but with a different viscosity. In
essence, this closures states that turbulent eddies are similar to molecular motions
that constantly act to redistribute and homogenize momentum. Similarly, for the
tracer flux term we can define an eddy diffusivity

u
′b′ = −κT∇b̄. (2.44)

This eddy viscosity/diffusivity closure is the most commonly used in modeling and
interpretation of geophysical observations. At the crudest level κT and νT are assumed
to be constants; in more sophisticated models they are functions of the large scale
flow. However, an eddy viscosity/diffusivity closure is rarely appropriate.

(Further reading: Chapter 1 of McComb)
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