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Chapter 3

Isotropic homogeneous 3D

turbulence

Turbulence was recognized as a distinct fluid behavior by Leonardo da Vinci more
than 500 years ago. It is Leonardo who termed such motions ”turbolenze”, and hence
the origin of our modern word for this type of fluid flow. But it wasn’t until the be-
ginning of last century that researchers were able to develop a rigorous mathematical
treatment of turbulence. The first major step was taken by G. I. Taylor during the
1930s. Taylor introduced formal statistical methods involving correlations, Fourier
transforms and power spectra into the turbulence literature. In a paper published in
1935 in the Proceedings of the Royal Society of London, he very explicitly presents
the assumption that turbulence is a random phenomenon and then proceeds to in-
troduce statistical tools for the analysis of homogeneous, isotropic turbulence. In
1941 the Russian statistician A. N. Kolmogorov published three papers (in Russian)
that provide some of the most important and most-often quoted results of turbulence
theory. These results, which will be discussed in some detail later, comprise what is
now referred to as the K41 theory, and represent a major success of the statistical
theories of turbulence. This theory provides a prediction for the energy spectrum of a
3D isotropic homogeneous turbulent flow. Kolmogorov proved that even though the
velocity of an isotropic homogeneous turbulent flow fluctuates in an unpredictable
fashion, the energy spectrum (how much kinetic energy is present on average at a
particular scale) is predictable.

The spectral theory of Kolmogorov had a profound impact on the field and it still rep-
resents the foundation of many theories of turbulence. It it thus appropriate to start
this course by introducing the concepts of 3D isotropic homogeneous turbulence and
K41. It should however be kept in mind that 3D isotropic homogeneous turbulence
is an idealization never encountered in nature. The challenge is then to understand
what aspects of these theories apply to natural flows and what are pathological.
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Figure 3.1: Isosurfaces of the the velocity gradient tensor used to visualize structures
in computation of isotropic homogeneous 3D turbulence. The yellow surfaces rep-
resent flow regions with stable focus/stretching topology while the blue outlines of
the isosurfaces show regions with unstable focus/contracting topology. 1283 simula-
tion with Taylor Reynolds number = 70.9. (Andrew Ooi, University of Melbourne,
Australia, 2004, http://www.mame.mu.oz.au/fluids/).

A turbulent flow is said to be isotropic if,

• rotation and buoyancy are not important and can be neglected,

• there is no mean flow.

Rotation and buoyancy forces tend to suppress vertical motions, as we discuss later
in the course, and create an anisotropy between the vertical and the horizontal direc-
tions. The presence of a mean flow with a particular orientation can also introduce
anisotropies in the turbulent velocity and pressure fields.

A flow is said to be homogeneous if,

• there are no spatial gradients in any averaged quantity.

This is equivalent to assume that the statistics of the turbulent flow is not a function
of space. An example of 3D isotropic homogeneous flow is shown in Fig. 3.1.
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The theory of 3D isotropic homogeneous turbulence is based on the examination of
the kinetic energy budget (potential energy is constant for flows with no buoyancy
fluctuations),
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If we take an ensemble average of this equation under the assumptions of homogeneity
we get,
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= −ε, (3.2)
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E ≡ 〈
u2
i

2
〉, ε ≡ 〈ν

(

∂ui
∂xj

)2
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This equation state that the rate of change of turbulent kinetic energy E (TKE)
is balanced by viscous dissipation ε. Such a balance cannot be sustained for long
times - a source of kinetic energy is needed. However sources of TKE are typically
not homogeneous: think of a stirrer or an oscillating boundary. We sidestep this
contradiction by assuming that for large Reynolds numbers, although isotropy and
homogeneity are violated by the mechanism producing the turbulence, they still hold
at small scales and away from boundaries. Then the turbulence production can be
represented simply by a forcing term F , assumed to be isotropic and homogeneous:

dE

dt
= −ε+ F. (3.4)

3.1 Kinetic Energy Spectra for 3D turbulence

Definition of KE in spectral space

For a flow which is homogeneous in space (i.e. statistical properties are independent of
position), a spectral description is very appropriate, allowing us to examine properties
as a function of wavelength. The total kinetic energy can be written replacing the
ensemble average with a space average,
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ui(x)ui(x) dx, (3.5)

where V is the volume domain. The spectrum φi,j(k) is then defined by,

E =
1

2

∫ ∫ ∫

φi,i(k)dk =
∫ ∫ ∫

E(k)dk (3.6)
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where φi,j(k) is the Fourier transform of the velocity correlation tensor Ri,j(r),

φi,j(k) =
1

(2π)3

∫ ∫ ∫

Ri,j(r)e
−ik.rdr, Ri,j(r) =

1

V

∫ ∫ ∫

uj(x)ui(x+ r)dx. (3.7)

Ri,j(r) tells us how velocities at points separated by a vector r are related. If we
know these two point velocity correlations, we can deduce E(k). Hence the energy
spectrum has the information content of the two-point correlation.

E(k) contains directional information. More usually, we want to know the energy at
a particular scale k = |k| without any interest in separating it by direction. To find
E(k), we integrate over the spherical shell of radius k (in 3-dimensions),

E =
∫ ∫ ∫

E(k)dk =
∫ ∞

0

[
∮

k2E(k)dσ
]

dk =
∫ ∞

0
E(k)dk, (3.8)

where σ is the solid angle in wavenumber space, i.e. dσ = sin θ1 dθ1 dθ2. We now
define the isotropic spectrum as,

E(k) =
∮

k2E(k)dσ =
1

2

∮

k2φi,i(k)dσ. (3.9)

For isotropic velocity fields the spectrum does not depend on directions, i.e. φi,i(k) =
φi,i(k), and we have,

E(k) = 2πk2φi,i(k). (3.10)

Energy budget equation in spectral space

We have an equation for the evolution of the total kinetic energy E. Equally interest-
ing is the evolution of E(k), the isotropic energy at a particular wavenumber k. This
will include terms which describe the transfer of energy from one scale to another,
via nonlinear interactions.

To obtain such an equation we must take the Fourier transform of the non-rotating,
unstratified Boussinesq equations,
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The two terms on the lhs are linear and are easily transformed into Fourier space,

∂

∂t
ui(x, t) ⇐⇒

∂

∂t
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j ûi(k, t). (3.13)
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In order to convert the pressure gradient term, we first notice that taking the diver-
gence of the Navier-Stokes equation we obtain,

∂2p

∂x2
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= −ρ0
∂ui
∂xj

∂uj
∂xi

. (3.14)

Thus both terms on the rhs of eq. (3.11) involve the product of velocities. The
convolution theorem states that the Fourier transform of a product of two functions
is given by the convolution of their Fourier transforms,

1
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(2π)3

∫ ∫ ∫
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Applying the convolution terms to the terms on the rhs we get, The two terms on
the lhs are linear and are easily transformed in Fourier space,
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∫ ∫ ∫ piqj
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ûj(p, t)ûi(q, t)δ(p+ q− k)dpdq. (3.17)

Plugging all these expressions in eq. (3.11) we obtain the Navier-Stokes equation in
Fourier space,
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)
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)
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(3.18)
The term on the right hand side shows that the nonlinear terms involve triad inter-
actions between wave vectors such that k = p+ q.

Now to obtain the energy equation we multiply e. (3.18) by û∗i (k, t) and we integrate
over k,

(

∂

∂t
+ 2νk2

)

φi,i(k, t) =

Re
[
∫ ∫ ∫

Aijm(k,p,q)û
∗
i (k, t)ûj(p, t)ûm(q, t)δ(p+ q− k)dpdqdk

]

. (3.19)

The terms on the rhs represent the triad interactions that exchange energy between
ûi(k, t), ûj(p, t), and ûm(q, t). The coefficient Aijm are the coupling coefficient of
each triad and depends only on the wavenumbers.

If pressure and advection were not present, the energy equation would reduce to,

(

∂

∂t
+ 2νk2

)

φi,i(k, t) = 0, (3.20)
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in which the wavenumbers are uncoupled. The solution to this equation is,

φi,i(k, t) = φi,i(k, 0)e
−νk2t. (3.21)

According to (3.21), the energy in wavenumber k decays exponentially, at a rate
that increases with increasing wavenumber magnitude k. Thus viscosity damps the
smallest spatial scale fastest.

We now restrict our analysis to isotropic velocity fields, so that we can use (3.10) and
simplify (3.19),

∂

∂t
E(k, t) = T (k, t)− 2νk2E(k, t), (3.22)

where T (k, t) comprises all triad interaction terms. If we examine the integral of this
equation over all k,

∂

∂t

∫ ∞

0
E(k)dk =

∫ ∞

0
T (k, t)dk − 2ν

∫ ∞

0
k2E(k)dk, (3.23)

and note that −2νk2E(k) is the Fourier transform of the dissipation term, then we
see that the equation for the total energy budget in (3.2), is recovered only if,

∫ ∞

0
T (k, t)dk = 0. (3.24)

Hence the nonlinear interactions transfer energy between different wave numbers, but
do not change the total energy.

Now, adding a forcing term to the energy equation in k-space we have the following
equation for energy at a particular wavenumber k,

∂

∂t
E(k, t) = T (k, t) + F (k, t)− 2νk2E(k, t), (3.25)

where F (k, t) is the forcing term, and T (k, t) is the kinetic energy transfer, due to
nonlinear interactions. The kinetic energy flux through wave number k is Π(k, t),
defined as,

Π(k, t) =
∫ ∞

k
T (k′, t)dk′, (3.26)

or

T (k, t) = −
∂Π(k, t)

∂k
. (3.27)

For stationary turbulence,

2νk2E(k) = T (k) + F (k). (3.28)

Remembering that the total dissipation rate is given by,

ε =
∫ ∞

0
2νk2E(k)dk (3.29)
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and that the integral of the triad interactions over the whole k-space vanishes, we
have,

ε =
∫ ∞

0
F (k)dk. (3.30)

The rate of dissipation of energy is equal to the rate of injection of energy.

If the forcing F (k) is concentrated on a narrow spectral band centered around a wave
number ki, then for k 6= ki,

2νk2E(k) = T (k). (3.31)

In the limit of ν → 0, the energy dissipation becomes negligible at large scales. Thus
there must be an intermediate range of scales between the forcing scale and the scale
where viscous dissipation becomes important, where,

2νk2E(k) = T (k) ≈ 0. (3.32)

Notice that ε must remain nonzero, for nonzero F (k), in order to balance the energy
injection. This is achieved by

∫∞

0 k2E(k)dk → ∞, i.e. the velocity fluctuations at
small scales increase.

Then we find the energy flux in the limit ν → 0,

Π(k) = 0, : k < ki

Π(k) = ε : k > ki (3.33)

Hence at vanishing viscosity, the kinetic energy flux is constant and equal to the in-
jection rate, for wavenumbers greater than the injection wavenumber ki. The scenario
is as follows. (a) Energy is input at a rate ε at a wavenumber ki. (b) Energy is fluxed
to higher wavenumbers at a rate ε trough triad interactions. (c) Energy is eventually
dissipated at very high wavenumbers at a rate ε, even in the limit of ν → 0.

The statement that triad interactions produce a finite energy flux ε toward small
scales does not mean that all triad interactions transfer energy exclusively toward
small scales. Triad interactions transfer large amounts of energy toward both large
and small scales. On average, however, there is an excess of energy transfer toward
small scales given by ε.

Kolmogorov spectrum

Kolmogorov’s 1941 theory for the energy spectrum makes use of the result that ε, the
energy injection rate, and dissipation rate also controls the flux of energy. Energy
flux is independent of wavenumber k, and equal to ε for k > ki. Kolmogorov’s theory
assumes the injection wavenumber is much less than the dissipation wavenumber
(ki << kd, or large Re). In the intermediate range of scales ki < k < kd neither the
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forcing nor the viscosity are explicitly important, but instead the energy flux ε and
the local wavenumber k are the only controlling parameters. Then we can express
the energy density as

E(k) = f(ε, k) (3.34)

Now using dimensional analysis:

Quantity Dimension
Wavenumber k 1/L
Energy per unit mass E U 2 ∼ L2/T 2

Energy spectrum E(k) EL ∼ L3/T 2

Energy flux ε E/T ∼ L2/T 3

In eq. (3.34) the lhs has dimensionality L3/T 2; the dimension T−2 can only be bal-
anced by ε2/3 because k has no time dependence. Thus,

E(k) = ε2/3g(k). (3.35)

Now g(k) must have dimensions L5/3 and the functional dependence we must have,
if the assumptions hold, is,

E(k) = CKε
2/3k−5/3 (3.36)

This is the famous Kolmogorov spectrum, one of the cornerstone of turbulence theory.
CK is a universal constant, the Kolmogorov constant, experimentally found to be
approximately 1.5. The region of parameter space in k where the energy spectrum
follows this k−5/3 form is known as the inertial range. In this range, energy cascades
from the larger scales where it was injected ultimately to the dissipation scale. The
theory assumes that the spectrum at any particular k depends only on spectrally
local quantities - i.e. has no dependence on ki for example. Hence the possibility for
long-range interactions is ignored.

We can also derive the Kolmogorov spectrum in a perhaps more physical way (after
Obukhov). Define an eddy turnover time τ(k) at wavenumber k as the time taken
for a parcel with energy E(k) to move a distance 1/k. If τ(k) depends only on E(k)
and k then, from dimensional analysis,

τ(k) ∼
[

k3E(k)
]−1/2

(3.37)

The energy flux can be defined as the available energy divided by the characteristic
time τ . The available energy at a wavenumber k is of the order of kE(k). Then we
have,

ε ∼
kE(k)

τ(k)
∼ k5/2E(k)3/2, (3.38)

and hence,
E(k) ∼ ε2/3k−5/3. (3.39)
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Characteristic scales of turbulence

Kolmogorov scale

We have shown that viscous dissipation acts most efficiently at small scales. Thus
above a certain wavenumber kd, viscosity will become important, and E(k) will decay
more rapidly than in the inertial range. The regime k > kd is known as the dissipation
range. A simple scaling argument for kd can be made by assuming that the spectrum
follows the inertial scaling until kd and then drops suddenly to zero because of viscous
dissipation. In reality the transition between the two regimes is more gradual, but
this simple model predicts kd quite accurately. First we assume,

E(k) = CKε
2/3k−5/3, ki < k < kd,

E(k) = 0, k > kd. (3.40)

Substituting (3.29), and integrating between ki and kd we find,

kd ∼

(

ε1/4

ν3/4

)

. (3.41)

The inverse ld = 1/kd is known as the Kolmogorov scale, the scale at which dissipation
becomes important.

ld ∼

(

ν3/4

ε1/4

)

(3.42)

Integral scale

At the small wavenumber end of the spectrum, the important lengthscale is li, the
integral scale, the scale of the energy-containing eddies. li = 1/ki. We can evaluate
li in terms of ε. Let us write,

U2 = 2
∫ ∞

0
E(k)dk (3.43)

and substituting for E(k) from ( 3.36),

U2 ∼ 2
∫ ∞

0
CKε

2/3k−5/3dk ∼ 3CKε
2/3k

−2/3
i . (3.44)

Then,

ki ∼
ε

U3
(3.45)

so that li ∼ U 3/ε. Then the ratio of maximum and minimum dynamically active
scales,

li
ld
=
kd
ki
∼

U3

ε3/4ν3/4
∼

(

Uli
ν

)3/4

∼ Re
3/4
li
. (3.46)
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where Reli is the integral Reynolds number. Hence in K41 the inertial range spans
a range of scales growing as the (3/4)th power of the integral Reynolds number. It
follows that if we want to describe such a flow accurately in a numerical simulation
on a uniform grid, the minimum number of points per integral scale is N ∼ Re

9/4
li
.

One consequence is that the storage requirements of numerical simulations scale as
Re

9/4
li
. Since the time step has usually to be taken proportional to the spatial mesh,

the total computational work needed to integrate the equations for a fixed number of
large eddy turnover times grows as Re3

li
. This shows that progress in achieving high

Reli simulations is very slow.

Taylor microscale

A third length scale often used to characterize turbulence is the Taylor microscale,

λ =

(

〈u2
i 〉

〈|∇ui|2〉

)1/2

=

(

U2ν

ε

)1/2

. (3.47)

The Taylor microscale is the characteristic spatial scale of the velocity gradients.
Using λ, an alternative Reynolds number can be defined,

Reλ =
Uλ

ν
=

U2

ν1/2ε1/2
, (3.48)

where Reλ ∼ Re
1/2
li
∼ li/λ.

Ozmidov scale

In geophysical flows 3D turbulence can be a reasonable approximation at scales small
enough that buoyancy and rotation effects can be neglected. Stratification becomes
important at scales smaller than rotation and it is therefore more important in setting
the upper scales at which 3D arguments hold. Stratification affects turbulence when
the Froude number Fr = U/(NH) < 1, where U is a typical velocity scale, and H
a typical vertical length scale of the motion. For large Fr, the kinetic energy of the
motion is much larger than the potential energy changes involved in making vertical
excursions of order H. For small Fr, the stratification suppresses the vertical motion
because a substantial fraction of kinetic energy must be converted to potential energy
when a parcel moves in the vertical.

We can define a characteristic scale lB at which overturning is suppressed by the
buoyancy stratification as follows. The velocity associated with a particular length
scale l in high Reynolds number isotropic 3D turbulence scales like,

u2 ∼ ε2/3k−2/3 ⇐⇒ u ∼ (lε)1/3. (3.49)

Vertical motion at length scale l will be suppressed by the stratification when the
local Froude number Frl = 1. If we define the length scale at which this suppression
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occurs as lB then,

uB
NlB

=
(lBε)

1/3

NlB
= 1 =⇒ lB =

(

ε

N3

)1/2

(3.50)

where lB is known as the Ozmidov scale.

In stratified geophysical flows, we have a scenario in which a regime transition occurs
at lB.

• l < lB: Fully 3D, isotropic turbulence. In this regime stratification can be
neglected, and an inertial range may exist, if ld << lB, i.e. ε/(νN

2) >> 1.

• l > lB: Stratification influenced regime. In this regime ε is no longer constant
with wave number, since some kinetic energy is lost through conversion to po-
tential energy. 3D turbulence is replaced by motion controlled by the buoyancy
stratification: either internal waves, or a quasi-2-dimensional turbulence, often
described as “pancake turbulence”, characterized by strong vortical motions in
decoupled horizontal layers.

(For more on stratified turbulence, see Lesieur Ch XIII, Metais and Herring, 1989:
Numerical simulations of freely evolving turbulence in stably stratified fluids. J.
Fluid Mech., 239. Fincham, Maxworthy and Spedding, 1996: Energy dissipation and
vortex structure in freely-decaying stratified grid turbulence. Dyn. Atmos. Oceans,
23, 155-169.)

Kolmogorov in physical space

Kolmogorov formulated his theory in physical space, making predictions for Sp, the
longitudinal velocity structure function of order p,

δvr = [u(x+ r, t)− u(x, t)] .
r

r
(3.51)

Sp = 〈|δvr|
p〉. (3.52)

For homogeneous isotropic turbulence the structure function depends only on the
magnitude of r, i.e. Sp = Sp(r). Under the assumptions described above, i.e. that at
a scale r, Sp depends only on the energy flux ε, and the scale r, dimensional analysis
can be sued to predict that,

Sp(r, t) = Cp(εr)
p/3 (3.53)
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where Cp is a constant. In particular S2 ∼ (εr)2/3. The second order structure
function is related to the energy spectrum for an isotropic homogeneous field,

S2 = 〈(δvr)
2〉 = 〈(u//(x+ r, t)− u//(x, t))

2〉

= 2〈u//(x+ r, t)u//(x, t)〉+ 2〈|u//(x, t)|
2〉

= 2
∫

(1− eik·r)φ(k, t)dk

= 4
∫ ∞

0
E(k, t)

(

1−
sin(kr)

kr

)

dk. (3.54)

If we substitute for E(k) from the Kolmogorov spectrum, and assume this applies
from k À r−1 then,

〈(δvr)
2〉 ∼ CK(εr)

2/3. (3.55)

Hence the Kolmogorov k−5/3 spectrum is consistent with the second order structure
function of the form r2/3. (Note that S2 is only finite if E(k, t) has the form k−n

where 1 < n < 3.)

3.2 Intermittency in isotropic 3D turbulence

[This chapter is a synthesis of material taken from Frisch (Turbulence, Cambridge
University Press, 1995) and Salmon (Lectures on Geophysical Fluid Dynamics, Oxford
University Press, 1998)]

Kolmogorov’s 1941 model for the energy spectrum of isotropic homogeneous 3D tur-
bulence assumes that there is an intermediate region in wavenumber space, the iner-
tial range, where neither the forcing nor the viscosity are explicitly important. This
simple assumption paves the road to determining the shape of the energy spectrum.
Apart from forcing and dissipation, there are only two other dimensional parameters
in the Navier-Stokes equations: the energy flux ε and the local wavenumber k. Thus
the energy spectrum must be a function of these two parameters only. Dimensional
consistency is all that is required to get an expression for the energy spectrum,

E(k) ≈ CKε
2/3k−5/3. (3.56)

The model assumes that the spectra at any particular k depends only on spectrally
local quantities: the possibility for long-range interactions is ignored. In this chapter
we discuss whether the assumption of locality is satisfied in real flows, and we exam-
ine some of the developments in the theory of 3D turbulence beyond Kolmogorov’s
seminal work.
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Landau and the lack of universality in turbulence

In a famous footnote in his book on fluid dynamics, L.D. Landau noted an important
inconsistency in K41 and objected to its universality. This led to a revision of the
theory, but most people feel that it also destroyed the hope that there can be an exact
theory. Landau’s objection is neither the only, nor the most serious objection to K41.
However it has helped the scientific community to better appreciate the enormous
assumptions underlying Kolmogorov’s theory.

Landau’s remark appeared in a footnote in the 1944 edition of his book on Fluid
mechanics, but in later editions found its way into the main text. Here is the full
text of the remark, as it appears on page 140 of the second edition of the English
translation of the book. The only changes are the substitution of Landau’s notation,
with the notation used in these notes.

One further general remark should be made. It might be thought that the possibility
exist in principle of obtaining a universal formula, applicable to any turbulent flow,
which should give S2(r) for all r that are small compared to r0. In fact, however, there
can be no such formula, as we see from the following argument. The instantaneous
value of (δv(r))2 might in principle be expressed as a universal function of the energy
dissipation ε at the instant considered. When we average these expressions, however,
an important part will be played by the manner of variation of ε over times of the
order of periods of the large eddies (with size ∼ r0), and this variation is different for
different flows. The result of the averaging therefore cannot be universal.

Kraichnan (1974) gave an illuminating reformulation of Landau’s footnote remark.
The essence of Landau’s objection is that K41 cannot apply to a collection of flows
with different dissipation rates ε. First consider two completely separate flows. The
first flow is vigorously stirred so that ε1 is large. The second flow is weakly stirred so
that ε2 is small. If both flows are fully turbulent, then according to K41,

E1(k) = CKε
2/3
1 k−5/3, and E2(k) = CKε

2/3
2 k−5/3. (3.57)

Next consider a system composed of these two separate flows. If the flows occupy
equal volumes, then the dissipation and the energy spectrum of the composite system
are given by,

ε =
1

2
(ε1 + ε2) , and E(k) =

1

2
(E1(k) + E2(k)) . (3.58)

Thus for the composite system,

E(k) 6= CKε
2/3k−5/3. (3.59)

That is, the composite system does not obey K41, essentially because the average of
a two-thirds power is not equal to the two-thirds power of the average.
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So far there seems to be no problem, because the composite flow is not a single flow,
and hence there is no reason why K41 should apply to it. But suppose that the
subscripts 1 and 2 do not refer to two flows, but to two large regions of the same flow
with locally different dissipation rates. We conclude that K41 fails in cases where
the dissipation rate ε, averaged over length scales characteristic of the inertial range,
fluctuates.

Intermittency

Frisch in chapter 8 of his book on Turbulence shows two examples of irregular signals.
The signal in Figure 8.1 is self-similar, i.e. successive enlargements of the signal have
the same general aspect, regardless of where the magnification window is positioned.
The signal in Figure 8.2 is intermittent, i.e. it displays activity during only a fraction
of the time, which decreases with the scale under consideration. Enlargements of
different sections of the signal produce completely different results, depending on
whether the window is positioned on an active or passive period. When dealing with
intermittent signals, the smaller the window, the more carefully it must be positioned
to produce a nontrivial function.

The model of Kolmogorov relied on the assumption that turbulent signals are self-
similar. Landau pointed out that, if dissipation is intermittent, then the model K41
had to be reconsidered. Laboratory experiments showed that Landau’s remark was
right on the spot: dissipation signals are strongly intermittent. In this section, we will
discuss the theoretical arguments that have been proposed to reconcile Kolmogorov
and Landau.

Definition

The notion of intermittency can be quantified for homogeneous isotropic random
functions v(x). Consider the structure function of order p,

Sp(r) = 〈 |v(x+ r)− v(x)|p 〉. (3.60)

The structure function Sp(r) depends only on the magnitude of r (r ≡ |r|), because
we assume that the turbulence, and therefore v(x), is isotropic and homogeneous.
We say that the random function v(x) is intermittent at small scales if the kurtosis,

K(r) =
S4(r)

S2(r)2
=
〈 |v(x+ r)− v(x)|4 〉

〈 |v(x+ r)− v(x)|2 〉2
(3.61)

grows without bound as the separation scale r decreases.
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By our definition, neither Gaussian, nor self-similar signals are intermittent, because
their kurtosis is independent of r. In the Gaussian case, this is because the difference
of two Gaussian variables is also a Gaussian variable, and Gaussian variable have a
kurtosis of 3. In the self-similar case the proof is straightforward as well. A random
variable is self-similar if it posses a unique scaling exponent h, such that,

v(x+ λr)− v(x)
law
= λh (v(x+ λr)− v(x)) , ∀λ ∈ <, (3.62)

for all x, and all increments r and λr. It is easy to show that, for any λ > 0, when r

is changed into λr in (3.61), both the numerator and the denominator are multiplied
by λh, leaving the flatness unchanged.

Is turbulence self-similar or intermittent? Visual inspection of turbulent velocity
signals suggests that it is self-similar. If, however, velocity increments are computed
over small enough distances, intermittent features show up. Intermittency becomes
conspicuous only when the spatial separation r is comparable to, or smaller than, the
Kolmogorov dissipation scale. Intermittency is thus a characteristic of the dissipation
range.

The β model

The beta-model is a schematic model that illustrates the remark of Landau and
suggests how to correct K41. We follow the derivation of Salmon in his book Lectures
on Geophysical Fluid Dynamics.

Consider a turbulent flow stirred at some large scale r0. The energy is transferred to
smaller spatial scales via the nonlinear terms in the momentum equations. We suppose
that this transfer happens in a series of cascade steps from scale r0 to r1 = r0/2, from
scale r1 to r2 = r1/2, and so on (the factor of 1/2 is chosen for convenience; any other
factor works as well). The n-th cascade step corresponds to an eddy size,

rn =
r0
2n
≡ k−1

n . (3.63)

We also define δvn as the characteristic velocity change across eddies of size rn; εn as
the rate at which energy passes through the n-th cascade step; and

En =
∫ kn+1

kn

E(k) dk, (3.64)

as the energy, per unit volume, contained in eddies of size rn.

We assume that the cascade can proceed in one of two ways, corresponding to Kol-
mogorov’s and Landau’s models of turbulence. In the first case, the eddies created
at each scale fill the whole space uniformly, i.e. turbulence is self-similar. In the sec-
ond case, eddies fill only a fraction β of the available space, and are correspondingly
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stronger because they cascade the total energy flux in a smaller area. For β < 1 tur-
bulence is intermittent in the sense proposed by Landau. K41 is recovered by setting
β = 1.

For a generic β ≤ 1, the total energy in eddies of size rn is the energy within the
eddies themselves, δv2

n, times the fraction βn of the total volume occupied by the
eddies,

En ∼ βnδv2
n. (3.65)

This energy moves through the n-th cascade step in an eddy turnover time,

τn ∼
rn
δvn

=
1

knδvn
. (3.66)

The rate at which energy passes through the n-th cascade step is then,

εn ∼
En

τn
∼ βnδv3

nkn. (3.67)

If the turbulence is stationary, εn must be independent of n (otherwise energy would
pile up at some intermediate wavenumber), that is,

εn = ε. (3.68)

Combining (3.65), (3.67, and (3.68) we obtain,

En ∼ ε2/3k−2/3
n βn/3. (3.69)

The relationship between En and the spectrum, that is the kinetic energy density per
unit wavenumber, follows from the definition in (3.64),

En =
∫ kn+1

kn

E(k) dk =
∫ kn+1

kn

k E(k) d ln(k) = knE(kn) ln

(

kn+1

kn

)

∼ knE(kn) (3.70)

Plugging into (3.69),
E(kn) ∼ ε2/3k−5/3

n βn/3. (3.71)

According to (3.71), the energy spectrum at wavenumber kn is smaller than that
predicted by K41, by a factor βn/3 (and β < 1 if the cascade is not space filling).
Physically this happens because eddies are more energetic, when they are not space
filling, and their residency time is shortened at each cascade step.

Let us introduce a new parameter h as,

β =
1

2h
h ≥ 0. (3.72)
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We can now show that the intermittency of turbulence increases with h. Let us write,

βn =
1

(2h)n
=
(

rn
r0

)h

=

(

k0

kn

)h

. (3.73)

Using the definition of h, the spectrum in (3.71) becomes,

E(kn) ∼ k
h/3
0 ε2/3k−(5+h)/3

n . (3.74)

The spectrum (3.74) reduces to K41 in the case of a space-filling cascade (β = 1, h =
0). However for intermittent (h > 0) turbulence, the spectrum falls off more steeply.

Observations support the prediction of K41 (with h = 0) for the spectrum, but
suggest increasing disagreement with K41 as higher order moments are considered.
Thus Kolomogorov’s prediction for the spectrum remains valid, but Landau’s remark
plays an important role as well.

As an example of statistics of order higher than 2, we consider the structure func-
tions defined in (3.60). If r−1 lies within the inertial range, we have shown that, by
dimensional analysis, K41 predicts that,

Sp(r) = Cp(εr)
p/3, (3.75)

and that the kurtosis is independent of r,

K(r) =
S4(r)

(S2(r))
2 =

C4

(C2)
2 . (3.76)

However, observations suggest that K(r) increases with r−1. Since the kurtosis is
a measure of intermittency, observations show a spatial intermittency that increases
with decreasing eddy size. This contradicts K41, and suggests that eddies of decreas-
ing size are confined to a decreasing fraction of fluid volume.

The β model accounts for the decreasing size of volume occupied by eddies at small
scales. This results in a different scaling for the structure functions,

Sp (rn) ∼ βnδvpn. (3.77)

Hence, using (3.67) and rn = 1/kn, the β model predicts,

Sp (rn) ∼ βn(1−p/3)εp/3
(

rn
ro

)p/3

, (3.78)

or,

Sp (rn) ∼ Cpε
p/3
(

rn
ro

)h(1−p/3)+p/3

. (3.79)
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We can now compute the kurtosis,

K(r) ∼
(

rn
ro

)−h

. (3.80)

The β model predicts that turbulence is intermittent, because K(r) is an increasing
function of r−1.

It appears as if the hunt for the true model of homogeneous isotropic turbulence
is still open. Observations support the predictions of K41 for the statistics of the
second moment, but deviations are observed for p > 2. In particular K(r) displays
intermittency. The β model, with h > 0, predicts intermittency, but it also predicts
that S2(r) should show departures from K41: these departures are not observed. In
the next section we will show that a combination of both models seem to be required
in order to explain the observations.

Multifractal models

In the literature, it is common to express the scalings of turbulent flows by computing
the exponents of structure functions ζp, defined as,

Sp(r) ∝
(

r

r0

)ζp

, (3.81)

for a range of different p (not necessarily integers). K41 predicts that ζp = p/3, while
the β model has ζp = h(1− p/3) + p/3.

Observations suggest that ζp = p/3 for p ≤ 3, but deviations from this linear scaling
appear at higher moments. A natural extension of the β model that produces a
double scaling for different p is to introduce bifractality. Assume that there are two
families of eddies both embedded in the volume of fluid. One family at each cascade
step fills a fraction β1 of the available space, while the other family fills a different
fraction β2. Together with β1 and β2, we also define h1 and h2 as in (3.72).

Following the same steps described for the β model, we can obtain the scalings for
the structure functions,

Sp(r) = µ1

(

r

r0

)h1(1−p/3)+p/3

+ µ2

(

r

r0

)h2(1−p/3)+p/3

, (3.82)

where µ1 and µ2 are order unity constants.

Thus all the structure functions comprise the superposition of two power laws. In the
inertial range, when r ¿ r0, the power law with the smallest exponent will dominate.
We thus obtain,

Sp(r) ∝
(

r

r0

)ζp

, ζp = min (h1(1− p/3) + p/3, h2(1− p/3) + p/3) . (3.83)
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Figure 3.2: Structure functions of order 2, 3, 4, and 5 as a function of r/r0, as given
by eq. (3.82) with h1 = 0 and h2 = .75. The dark lines are the full Sp, the red and
blue lines are the separate contributions of the two terms in the right-hand side of
eq. (3.82)
.

Depending on the value of the exponent p, the first or the second scaling dominates.
This is reminiscent of the multiple scaling behavior found in observations (Figure 3.2);

As an illustration of what is called bifractality, let us take a mixture of K41 turbulence
(h1 = 0) and β model turbulence (h2 > 0). We obtain,

ζp =

{

p/3 0 ≤ p ≤ 3
p/3 + h2(1− p/3) p ≥ 3.

(3.84)

Observe that with this choice the second (and third) moments follow the scaling of
K41, but the fourth moment displays intermittency. The transition happens at p = 3,
a point known as a phase transition (Fig. 3.2).
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Figure 3.3: Multifractal behavior of the scaling exponents of the structure function
given in eq. (3.82)
.

In real world turbulence there are more than two scaling exponents h1 and h2. The
curve ζp is neither a single power law (monofractal model), or the superposition of
two power laws (bifractal model). Observations suggest that ζp behaves exactly as in
the K41 theory for p ≤ 3, but it does not follow a power law for larger p. Multifractal
models, with multiple scaling exponents hi, can be easily derived as extensions of the
bifractal model. These models can be tuned to match the exponents ζp obtained from
data.

Coherent structures

Half a century after Kolmogorov’s work on the statistical theory of three dimensional
turbulence, we still wonder how his work can be reconciled with Leonardo’s half a
millennium old drawings of eddy motion in the study for the elimination of rapids
in the river Arno. Indeed, Kolmogorov’s work on turbulence, ignores any structure
which may be present in the flow.

In the first lecture, we pointed out that many turbulent flows are known to possess
coherent structures. Their rediscovery by Crow and Champagne (1971) and Brown
and Roshko (1974) has led to questioning the relevance of the traditional statistical
theory of turbulence. The accepted paradigm is that, as far as the inertial-range
properties are concerned, coherent structures do not matter if they are confined to
the large scales of the flow. But is this really the case? And is there a fully devel-
oped inertial range in geophysical turbulence, where inhomogeneities and coherent
structures do not appear?

A nice discussion of the dichotomy between the spectral description of turbulence and
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the description based on coherent patterns in real space can be found in the paper
by Armi and Flament (Journal of Geophysical Research, 90, 1985).

3.3 Passive tracer spectra

For a passive scalar which obeys an equation of the form ,

∂θ

∂t
+ u · ∇θ = κ∇2θ, (3.85)

we can write an equation for the variance 〈θ2〉,

∂〈θ2〉

∂t
+∇ · 〈uθ2〉 = −κ〈|∇θ|2〉. (3.86)

We assumed without loss of generality that 〈θ〉 = 0. Under the assumption that
the tracer statistics are homogeneous and isotropic, we can write an equation for the
spectrum P (k) of this variance, analogous to (3.28),

2κk2P (k) = T (k) + F (k), (3.87)

where T (k) is the nonlinear transfer of tracer variance, and F (k) is an external source
of tracer variance. Two of the results derived for the kinetic energy spectrum carry
over to the tracer spectrum problem. (1) The dissipation of variance χ must equal
the total injection of variance

∫∞

0 F (k)dk. (2) At wavenumbers far from the injection
scale and dissipation scale, variance is fluxed at a constant rate χ (set by the injection
rate). Using these two results, we can derive the form of the spectrum P (k). Notice
however that there is a major difference between the kinetic energy and the tracer
problems. In the tracer inertial range χ and k are not the only relevant parameters,
since the tracer field is subject to stirring by the flow. The flow parameters (e.g., ε)
also influence the tracer field.

We can derive the shape of the tracer spectrum in the range of wavenumbers where
both tracer and momentum dissipation can be neglected. Once again we assume that
forcing is confined to large scales. In the so-called inertial-convective range the fluxes
of kinetic energy and tracer variance must be constant, if a statistically steady sate
is to be achieved. Thus we can state, in analogy to Obukhov’s argument for kinetic
energy, that the tracer flux is given by the available variance at wavenumber k divided
by the eddy turnover timescale,

χ ∼
kP (k)

τ
. (3.88)

Assuming that eddy stirring is dominated by local interactions we can write that
τ = [k3E(k)]−1/2. But χ is a constant and therefore we have,

P (k) ∼ χk−5/2E(k)−1/2 (3.89)
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Substituting for E(K) from K41 we have,

P (k) = βχε−1/3k−5/3 (3.90)

where β is some universal constant. The tracer spectrum in the inertial-convective
range has the same slope as the kinetic energy spectrum and is known as the Obukhov-
Corrsin spectrum.

Length scales

The kinetic energy spectrum becomes influenced by viscosity at a wavenumber kd such
that Re ∼ 1. In order to estimate the Reynolds number at a particular lengthscale,
we need a scaling for the velocity field. Using K41 we have,

〈δv2
r〉 ∼ (εr)

2/3 =⇒ vr ∼ (εr)
1/3, (3.91)

where vr is an order of magnitude estimate of the velocity at a lengthscale r. Then

Rer ∼
vrr

ν
. (3.92)

Setting Rer ∼ 1, we find that viscosity becomes important at the scale 1/r = kd ∼
(ε/ν3)1/4, the Kolmogorov scale.

By analogy with the kinetic energy spectrum, the passive tracer spectrum becomes
influenced by diffusion at a wavenumber kc, where the Peclet number ∼ 1. We have
two different scenarios, depending on whether the wavenumber kc is smaller or larger
than the Kolmogorov wavenumber kd.

If the Prandtl number Pr = ν/κ < 1, then the dissipation scale kc occurs within the
inertial range (kc < kd). Plugging vr ∼ (εr)

1/3 in the definition of the Peclet number,

Per ∼
vrr

κ
, (3.93)

we find that Per ∼ 1 is achieved at a wavenumber 1/r = kc ∼ (ε/κ
3)1/4 = Pr3/4kd.

However, if diffusion becomes important at wavenumbers larger than viscosity does
(i.e. Pr > 1), kc does not lie within the inertial range, so we cannot use the inertial
range scaling to obtain vr; if the energy spectrum E(k) drops off more rapidly than
k−3, then (δvr)

2 cannot be calculated from (3.54). In this range the velocity spectrum
drops off exponentially to zero. Thus at scales k shorter than the Klolmogorov scale,
the tracer is not stirred by eddies with scale k because such eddies do not exist. At
these scales the trcaer is stirred by the smallest scales present in the flow, i.e. by

22



eddies at the Kolmogorv scale. For these eddies vr ∼ (ε/kd)
1/3 ∼ νkd. Smaller scale

features feel this as a ”large-scale” flow. Then the local Peclet number at a scale r is,

Per =
vrr

κ
=
νkdr

κ
. (3.94)

By definition Per ∼ 1 when r = 1/kc, the wavenumber at which diffusion becomes
important. Thus,

kc ∼
ν

κ
kd. (3.95)

Depending on the relative length of the viscous and dissipative cutoff scales, the
passive tracer tracer spectrum has several different subranges. For ki << k, and
k << kd and k << kc, neither κ nor ν are important. This is the inertial-convective
range considered above. If k << kd, but k > kc (for Pr < 1) then κ is important,
but not ν: the spectrum is in an inertial-diffusive range. If k << kc, but k > kd
(for Pr > 1), then ν is important but not κ: the spectrum is in an viscous-convective
range. Finally for k > kd and k > kc, the spectrum is in a viscous-diffusive range.
We consider the spectrum in each of these subranges separately.

Inertial-diffusive range

In the inertial diffusive range the flux of variance is no longer constant with k, since
diffusion is acting to reduce it. Instead, from (3.87),

T (k) = −
dΠ

dk
= 2κk2P (k). (3.96)

The flux Π(k) is not a constant in k in this range. Using Obukhov’s argument we
can also write,

Π(k) =
kP (k)

[k3E(k)]−1/2
. (3.97)

Inertial range scaling for the energy still applies, so we can use K41 to express E(k)
and we find that,

P (k) ∼ Π(k)k−5/2E(k)−1/2 = βε−1/3k−5/3Π(k). (3.98)

Substituting for P (k) in (3.96) we have,

dΠ

dk
= −2βκε−1/3k1/3Π(k). (3.99)

Solving for Π(k) we get,

Π(k) = χ exp
[

−
3

2
βκε−1/3k4/3

]

. (3.100)
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If we substitute back into (3.98) we find,

P (k) = βε−1/3k−5/3χ exp



−
3

2
β

(

k

kc

)4/3


 (3.101)

where kc = (ε/κ
3)1/4. Hence the spectrum of tracer variance behaves exponentially

for k > kd when Pr < 1. This spectrum is not valid far into the inertial-diffusive
subrange because it assumes Π(k) varies only slowly with k. (An alternative theory
of Batchelor et al. (1959) gives a k−17/3 spectrum. Neither form of the spectrum has
been verified.)

Viscous-convective subrange

For Pr > 1 and k > kd, but k < kc, the flux of variance Π(k) is constant: Π(k) = χ.
κ is not important, but ν is. The energy field drops off rapidly for k > kd. Hence the
scalar perturbations experience a shear corresponding to that at a scale kd, vkdkd =
(ε/ν)1/2. At k > kd this shear appears like a smooth large-scale flow. P (k) must
satisfy,

χ =
kP (k)

[k3
dE(kd)]

−1/2
. (3.102)

Plugging the expression for the Kolmogorov wavenumber kd,

P (k) = CBχk
−1
(

ε

ν

)−1/2

. (3.103)

This is known as the Batchelor spectrum, and CB is the Batchelor constant.

There is experimental evidence for the Batchelor spectrum. Gibson and Schwarz
(JFM, 1963) observed the Batchelor spectrum for temperature and salinity in labora-
tory measurements in water, and the approximate behavior for temperature spectrum
is also suggested by field measurements of Grant et al. (JFM, 1968), Oakey and El-
liott (JPO, 1982) and others. There is however a wide scatter in the predicted values
of the universal constant CB. The practical importance of these spectral expressions
lies in the fact that all scalar fluctuations and scalar dissipation are effectively deter-
mined by scales from the Batchelor range. The dissipation rates in turn determine
the mixing coefficients for scalars which are critical to understand small-scale physics
of the oceans and large scale circulation and global climate. The knowledge of spatial
power spectra of temperature fluctuations at small scales is also needed in treating
problems of sound and light propagation in water.

Further reading: Lesieur, Ch V, VI; Tennekes and Lumley, Ch 8; Frisch, Ch 5, 6, 7,
8.
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