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Chapter 6

Wave mean flow interactions

In the last few weeks we spent quite some time 1) discussing some basic ideas on
the transport of tracers by turbulent flows, and 2) investigating the properties of
turbulent flows in rotating stratified environments, like the ocean and the atmosphere.
The goal of this chapter is to bring together these two bodies of literature to study
the interaction of eddy motions with a large scale mean flow in geophysically relevant
problems. Following Glenn’s lecture on mean field approximations, we will consider
eddies generated through instabilities of a zonal mean jet in the quasi-geostrophic
approximation. This is a very special example, but it is a useful testbed to develop
our intuition about these problems. Furthermore there is no general theory for non-
zonal, non-quasi-geostrophic flows.

The literature on eddy mean-slows interactions is so vast that it would be impossible
to give a comprehensive review in one lecture. Thus we will select a few topics of
particular relevance in the oceanic context. The final goal is to apply these theories to
derive closure schemes that represent the effect of eddy motions on mean oceanic and
atmospheric flows. The interested reader can find more information in the references
given at the end of the chapter.

6.1 The quasi-geostrophic equations on a β-plane

Consider a flow in a Boussinesq fluid with characteristic horizontal length scale L,
velocity U , time scale T ≥ L/U , on a β-plane for which the Coriolis parameter is
f = f0 + βy. We make the assumption that,

1. the Rossby number Ro = U/f0L is small,

2. the β-effect is small, βL/f0 ≤ Ro,
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3. the isopycnal slopes |∂xb|/|∂zb| and |∂yb|/|∂zb| are ≤ Ro (otherwise vertical mo-
tions would not be small),

4. the static stability N2 = ∂b/∂z is a function of z only.

Under these assumptions, the leading order equations in Ro give geostrophic balance.
Thus we can write the leading order geostrophic velocities in the Ro expansion, as,

u = −∂ψ
∂y
, v =

∂ψ

∂x
, w = 0, (6.1)

where ψ is the geostrophic streamfunction,

ψ =
p− p0(z)

ρ0f0

. (6.2)

Hydrostatic balance gives us,
∂ψ

∂z
=

b

f0

. (6.3)

At the next order in Ro, we obtain the prognostic quasi-geostrophic equations,

Dgu− βyv − f0va = Gx, (6.4)

Dgv + βyu+ f0ua = Gy, (6.5)

∂xua + ∂yva + ∂zwa = 0, (6.6)

Dgb+N2wa = B, (6.7)

(6.8)

where Dg is the time derivative following the geostrophic motions,

Dg = ∂t + u∂x + v∂y, (6.9)

(ua, va, wa) is the ageostrophic velocity, i.e the difference between the actual velocity
and the geostrophic one, (Gx,Gy) is the external forcing on momentum (e.g. wind
stress, friction, ...), and B are the nonconservative buoyancy forces (e.g. small scale
mixing, sea-surface heat fluxes, ...).

Using (6.4) through (6.7), we can derive the equation for the quasi-geostrophic po-
tential vorticity (QGPV), q,

Dgq = χ, (6.10)

where,

q = f0 + βy + ∂xv − ∂yu+ f0∂z(b/N
2), (6.11)

χ = ∂xGy − ∂yGx + f0∂z(B/N2). (6.12)
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Eq. (6.10) tells us that for conservative flows (G = 0, B = 0) q is conserved following
the geostrophic flow. When the flow is not conservative, χ represents the local sources
and sinks of q, arising from viscous and diabatic effects. As you can see, the QGPV
satisfy the advection-diffusion equation of a generic tracer. Thus we might be able to
use the results on tracer transport in turbulent flows to study the dynamics of q.

6.2 Potential vorticity fluxes and the Eliassen-Palm

Theorem

The next three sections, up to the definition of Transformed Eulerian Mean, follow
very closely the notes of Alan Plumb on eddy-mean flows interactions. If you are
interested in learning more on this topic, I encourage you to contact Alan and ask for
a copy of his notes.

Consider the small amplitude motions on a steady, zonally-uniform basic state,

ū = ū(y, t), b̄ = b̄(y, t), ψ̄ = ψ̄(y, t), (6.13)

where
ū = −∂yψ̄, ∂y b̄ = −f0∂zū. (6.14)

The mean PV is,

q̄ = f0 + βy + ∂2
y ψ̄ + ∂z

(
f 2

0

N2
∂zψ̄

)
. (6.15)

The perturbation streamfunction and PV are given by,

ψ′ = ψ − ψ̄, q′ = q − q̄ = ∂2
xψ

′ + ∂2
yψ

′ + ∂z

(
f 2

0

N2
∂zψ

′
)

(6.16)

Using v′ = ∂xψ
′, we can also show that,

v′q′ = ∇ · F = ∇ ·
(
Fy

Fz

)
= ∇ ·

(
−u′v′
f0

N2v′b′

)
. (6.17)

F is known as the Eliassen-Palm flux. Note that the northward component of F is
minus the northward flux of zonal momentum by the eddies, u′v′, while the vertical
component is proportional to the northward flux of buoyancy, v′b′.

Linearizing the quasi-geostrophic potential vorticity equation (6.10), we get,

∂tq
′ + ū∂xq

′ + v′∂y q̄ = χ′. (6.18)
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If we multiply by q′ and average, we obtain the eddy potential enstrophy equation,

∂t

(
q′2

2

)
+ v′q′∂y q̄ = q′χ′. (6.19)

This equation is the basic ingredient for the Eliassen-Palm theorem: For waves which
are steady (∂tq′2 = 0), of small amplitude, and conservative (v′χ′ = 0), the northward
eddy PV flux vanishes (v′q′ = 0) and the flux F is nondivergent.

We can now consider the problem of how eddies impact the zonal mean circulation.
The mean quasi-geostrophic PV budget reads,

∂tq̄ + ∂y(v′q′) = χ̄. (6.20)

Because of the quasi-geostrophic approximation, eq. (6.20) contains no mean advec-
tion term and no vertical component of eddy fluxes.

The influence of the eddies on the mean QGPV, therefore, is entirely described by the
northward flux v′q′. Now we know from the Eliassen-Palm theorem that if the waves
are 1) steady, 2) conservative, and 3) of small amplitude, then F is nondivergent and
v′q′ = 0. Under these conditions, therefore, the equation for the zonally-averaged
QGPV is independent of the eddies. An therefore the full evolution of the mean flow
is independent of the eddies. This is known as the non-acceleration theorem.

6.3 Mean momentum and buoyancy budgets: con-

ventional approach

In order to fully appreciate the meaning of the Eliassen-Palm theorem, it is useful to
consider the zonal mean of the quasi-geostrophic momentum and buoyancy equations,

∂tū− f0v̄a = Ḡx − ∂y(u′v′), (6.21)

f0∂zū = −∂y b̄, (6.22)

∂yv̄a + ∂zw̄a = 0, (6.23)

∂tb̄+ w̄aN
2 = B̄ − ∂y(v′b′). (6.24)

The evolution of the zonal mean state in the presence of eddies is therefore manifested
in two terms – the convergence of the eddy flux of momentum, u′v′, and buoyancy,
v′b′. Both these terms force the mean flow equations and it is important to note that
the whole system is coupled, i.e., the buoyancy fluxes can impact on the mean flow,
just as much as the momentum fluxes. Thermal wind balance (6.22) links the two.
Consider, for example, a wave with v′b′ 6= 0, but u′v′ = 0 (as it is largely true in
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the ocean). The mean state cannot respond with a changing mean buoyancy only;
thermal wind balance demands a corresponding change in ū. From eq. (6.21), this can
only be achieved through an ageostrophic meridional circulation, which would impact
on both the momentum and buoyancy budgets. Thus, the eddies will not only drive
∂tū and ∂tb̄, but also v̄a and w̄a (except in the unlikely case where the eddy forcing
terms conspire not to disturb the thermal wind balance).

Note that the central role of the potential vorticity flux, obvious in the QGPV budget,
is not at all obvious here. Indeed, we have seen from the potential enstrophy budget,
that, under non-acceleration conditions, ∂tū and ∂tb̄ must be zero. What must, and
thus happen, under such circumstances, is that eddies induce an ageostrophic mean
motion, which exactly balance the eddy flux terms in (6.21) and (6.24), i.e. eddy
fluxes induce a mean circulation. This is reminiscent to the result that eddy fluxes of
quasi-conserved tracers can have an advective component: in this problem the mean
advective effect of the eddy fluxes is represented by the ageostrophic circulation.

6.4 The Transformed Eulerian Mean Theory

The difficulty in interpreting the balance of eddy terms and ageostrophic motions can
be overcome by what may seem a mathematical trick, but is in fact linked to the de-
composition of eddy fluxes in skew (advective) and symmetric (diffusive) components.
The trick is to redefine the mean meridional, ageostrophic, circulation.

Consider the mean buoyancy budget (6.24). This is (apart for the loss of some terms
through the quasi-geostrophic assumption) the same as the Eulerian mean budget of a
tracer equation. We saw that the eddy flux term can include an advective component.
Under quasi-geostrophic assumptions, we can guess what that component is.

We begin by noting that, from eq. (6.23), we may define an ageostrophic mean stream-
function χa, such that,

(v̄a, w̄a) = (−∂zχa, ∂yχa). (6.25)

We can then rewrite the mean buoyancy budget in (6.24) as,

∂tb̄+ ∂y

(
χa +

v′b′

N2

)
N2 = B̄. (6.26)

where we used the fact that N2 = N2(z), i.e. the vertical stratification does not
change with latitude. In this form, it is quite clear that the eddy flux term can be
represented as a mean advection, by defining an eddy induced mean streamfunction
χc as,

χc =
v′b′

N2
. (6.27)

5



We now define the “residual circulation” as,

(v̄†, w̄†) = (−∂zχ
†, ∂yχ

†), (6.28)

where the new streamfunction is,

χ† = χa + χc. (6.29)

The streamfunction χ† is the so-called residual streamfunction and it represents the
new definition of mean circulation. It is called a residual circulation, because in many
situations χa and χc tend to oppose each other, and χ† is the residual between two
strong circulations. If we substitute the definition in (6.27) into the mean buoyancy
budget, we obtain,

∂tb̄+ w†N2 = B̄. (6.30)

.

We thus succeeded in deriving a mean buoyancy equation in which there is no explicit
eddy term; buoyancy is transported solely through the mean vertical residual motion.
It might be thought, of course, that the eddy terms are still there, implicit in w†. But
this was also true of wa which, as noted earlier, is in general influenced by the eddies.
What we have done, is to redefine this influence, so as to put the mean buoyancy
budget into its simplest possible form.

We can complete the transformed system of equations,

∂tū− f0v̄
† = Ḡx +∇ · F , (6.31)

f0∂zū = −∂y b̄, (6.32)

∂yv̄
† + ∂zw̄

† = 0, (6.33)

∂tb̄+ w̄†N2 = B̄, (6.34)

where F is the Eliassen-Palm flux.

This transformation makes the role of eddies look quite different–even though the
physics described by equations (6.31) through (6.34) is the same described by (6.21)
through (6.24). The main advantage is that in terms of v̄†, w̄†, ∂tū, and ∂tb̄, the only
term representing the eddy forcing is ∇ · F = v′q′. This eddy forcing appears as
an effective body force in the mean momentum equation. It is clear therefore that,
under non-acceleration conditions (when ∇ · F = 0 and the boundary conditions are
independent of eddy dependent terms), v̄†, w̄†, ∂tū, and ∂tb̄, are independent of the
eddies.

When non-acceleration conditions are not satisfied, the transformed equations offer
a more transparent approach to the eddy-mean flow interaction problem, simply be-
cause the single term represented by the effective force ∇ · F entirely describes the
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eddy forcing of the mean state. In fact, this formulation gives us another interpreta-
tion of F , as an eddy flux of transformed negative (easterly) momentum, which is a
more reliable measure of eddy transport of momentum than u′v′ itself.

The interpretation of F as a momentum flux may seem to be a result of mathematical
tinkering. However, it should be remembered that the process of taking a mean is an
arbitrary one–there is no unique way of doing it. Thus, it is legitimate to choose the
definition of mean that simplifies the most the problem at hand. The Transformed
Eulerian Mean equations indeed give us a clearer picture on what is going on when
eddies interact with a mean flow.

6.5 Wave mean flow interactions in the Eady prob-

lem

This section is part of notes I have written in collaboration with Geoff Vallis. These
notes are now part of Geoff’s book on atmospheric and ocean fluid dynamics.

Eady proposed a very simple configuration to study the evolution of baroclinic insta-
bility in a channel. I assume that you are all familiar with the basic formulation of
the problem. Eady made considered the instability of a meridional buoyancy front in
a re-entrant channel under the following assumptions: (i) The instability is described
by the quasi-geostrophic equations. (ii) The motion is on the f -plane. (iii) The fluid
is uniformly stratified. That is, N2 is a constant. (iv) The basic state is of uniform
shear. That is u0 = Uz/D where U is a constant and z the height co-ordinate and
D the domain depth. (v) The motion is contained between two rigid, flat horizontal
surfaces.

We now consider the eddy fluxes in the Eady problem and how these might feed back
onto the mean flow. Because of the simplicity of the setting the problem can be fully
solved in both the Eulerian or residual frameworks, and it is therefore an instructive
example of the usefulness of the TEM methodology.

6.5.1 Formulation

Let us first distinguish between the basic flow, the zonal mean fields, and the pertur-
bation. The basic flow is the flow around which the equations of motion are linearized;
this flow is unstable, and the perturbations, assumed small, grow exponentially with
time. Because they are (formally) always small they do not affect the basic flow, but
they do produce changes in the zonal mean velocity and buoyancy fields. In Eulerian
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form this is represented by,

∂tū− f0v̄a = −∂yu′v′, b̄t +N2w̄a = −∂yv′b′. (6.35)

The TEM version of these equations as we have shown in the previous section, is,

∂tū− f0v̄
† = v′q′, b̄t +N2w̄† = 0, (6.36)

where in the Eady problem ∂yu′v′ and v′q′ are both zero. This follows without detailed
calculation, by noting that the eddy potential vorticity flux is zero because the basic
state has zero potential vorticity and therefore none may be generated. Further,
because the basic state does not vary in y the there can be no momentum flux
convergence in the y-direction, and so the momentum flux itself is zero if it is zero on
the boundary. We can calculate the perturbation quantities from the solution to Eady
problem (e.g., calculate u′v′) and thus infer the structure of the mean flow tendencies
ūt and b̄t and the meridional circulation, (v̄, w̄) or (v̄†, w̄†). All of these fields are
perturbation quantities and all are exponentially growing, and so in reality they will
eventually have a finite effect on the pre-existing zonal flow, but in the Eady problem,
or any similar linear problem, such rectification is assumed small and neglected.

Using the thermal wind relation, f0ūz = −b̄y to eliminate time derivatives in (6.35)
gives an equation for the meriodional streamfunction χa, namely,

f 2
0∂zzχa +N2∂yyχa = −∂yyv′b′, (6.37)

The boundary conditions are that χa = 0 at y = 0, L and z = 0, D, where L is
the width of the channel and D the depth. Similarly we obtain an equation for the
residual streamfunction,

f 2
0∂zzχ

† +N2∂yyχ
† = 0, (6.38)

where now the boundary conditions are that N2w̄† = ∂yv′b′ at the upper and lower
boundaries, and v† = 0 at the lateral boundaries. In terms of the residual stream-
function this is,

χ† =
v′b′

N2
, at z = 0, D, χ† = 0, at y = 0, L. (6.39)

The residual and overturning circulations are related by (6.29), and (6.37) and (6.38)
are, at one level, simply different representations of the same problem, connected by
a simple mathematical transformation. However, the residual streamfunction better
represents the total transport of the fluid. Eq. (6.38) is particularly simple, because
of the absence of potential vorticity fluxes in the interior, and it is apparent that the
residual circulation is driven by boundary sources. We care only about the spatial
structure of the right-hand sides of (6.38) and the boundary conditions of (6.39). The
former is given by,

−∂yyv′b′ ∝ −∂yy sin2 ly = −2l2 cos 2ly. (6.40)
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The eddy heat fluxes in the Eady problem are therefore independent of height. We
have already mentioned that the momentum fluxes are identically zero. Hence the
EP fluxes F = (−u′v′, f0/N

2v′b′) is directed purely vertically. And the boundary
conditions for the residual circulation are,

χ†(y, 0) = χ†(y, 1) ∝ sin2 ly. (6.41)

6.5.2 Solution

The solutions to (6.37) and (6.38) may be obtained either analytically or numerically.
The Eulerian circulation is dominated by a single cell, with equatorwards motion aloft
and polewards motion near the surface. This suggests that heat flux convergence in
high latitudes is leading to mean rising motion, with the precise shape of the stream-
function determined by the need to satisfy the boundary conditions. Although this is
true, the heat flux arises because of the motion of fluid parcels, so it may be a little
misleading to infer, as one might from the Eulerian streamfunction, that the heat
flux causes the individual parcels to rise or sink in this fashion. The residual stream-
function is a better indicator of the total mass transport and, perhaps as one might
intuitively expect, these show parcels rising in the low latitudes and sinking in high
latitudes, providing a tendency to flatten the isopycnals and reduce the meridional
temperature gradient.

The residual circulation also shows fluid entering of leaving the domain at the bound-
ary what does this represent? Suppose that instead of solving the continuous problem
we had posed the problem in a finite number of layers . As the number of layers in-
creases the solutions to the linear baroclinic instability problem approach that of the
Eady problem; however, the residual circulation is closed in the layered model, and
the sum over all the layers of the meridional transport vanishes. Now, in the layered
model the vertical boundary conditions are built in to the representation by way of a
redefinition of potential vorticity of the top and bottom layer, so that, in the layered
version of Eady problem there appears to be a potential vorticity gradient in these
two layers, instead of a buoyancy gradient at the boundary. The residual circulation
is then closed by a return flow that occurs only in the top and bottom layers, and
as the number of layers increases this flow is confined to a thinner and thinner layer,
and to a deltafunction in the continuous limit.

The effect on the mean flow is inferred directly from the residual circulation: the mean
flow acceleration is proportional to v† and the buoyancy tendency is proportional to
w†. Because there is no momentum flux convergence in the problem the zonal flow
tendency is entirely baroclinic its vertical integral is zero and over most of the
domain is such as to reduce the mean shear. Consistently (using thermal wind) the
buoyancy tendency is such as to reduce the meridional temperature gradient; that
is, the instabilities act to transport heat polewards and reduce the instability of the
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mean flow.

6.6 Parameterizing mesoscale motions in numeri-

cal models

So far we avoided getting our hands dirty to find closures that relate the eddy fluxes to
the mean flow. The TEM formalism is however often invoked to derive parameteriza-
tions of the interaction between large-scale mean flows and small-scale transient eddy
motions. In this section, we will use the results of TEM together with some physical
insight to derive sets of equations where the eddy terms do not appear explicitly. Two
approaches are used in the literature, one based on an energetic argument, and the
other on potential vorticity mixing theory.

6.6.1 The energetic argument

The energetic argument has been used to derive eddy parameterizations in the ocean
only. Thus we will restrict our scope to ocean dynamics in this section.

Although mesoscale eddy motions can be directly generated by external forcing, like
the wind field, most of the mesoscale eddy energy is believed to be the result of
instabilities in many forms (Pedlosky, 1987). The common belief is that eddies are
generated by extracting kinetic and potential energy from the mean flow. This might
not be the whole story though: in two dimensional and quasi-geostrophic turbulence,
eddy motions can create an inverse energy cascade and return some of the energy
back to the mean flow. The point here is that an analysis of the exchange of energy
between mean and eddy motions might be fruitful to derive parameterizations.

The total mechanical energy is given by the sum of the kinetic K and potential
energies P , which in the geostrophic approximation are,

K =
1

2
(u2 + v2), P =

1

2

b2

N2
. (6.42)

Conservation of total energy takes the form,[
∂

∂t
+ u · ∇

]
[K + P ] +

1

ρ0

∇ · (pua) = u · G +
bB
N2

. (6.43)

Exchange of energy between eddies and a zonal flow may be defined following the
separation of the zonally averaged kinetic and potential energies into components
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associated with the eddy and mean motions. In the quasi-geostrophic approximation,
this is straightforward,

KM = 1
2
(ū2 + v̄2), PM =

1

2

b̄2

N2
, (6.44)

KE = 1
2

(
u′2 + v′2

)
, PE =

1

2

b′2

N2
. (6.45)

Let us assume once again that the basic state is a zonal flow, i.e. ū = ū(y, z, t),
b̄ = b̄(y, z, t), but v̄ = w̄ = 0. The equations for the mean kinetic and potential
energies are,

∂KM

∂t
+

1

ρ0

∇ · (ūap̄) = b̄w̄a − ū∂y(u′v′) + ūḠ, (6.46)

∂PM

∂t
+ b̄w̄a = −b̄∂y

(
v′b′

N2

)
+
b̄B̄
N2

. (6.47)

The eddy terms on the rhs represent conversion of mean energy into turbulent energy
and are often associated with instabilities of the mean flow.

Equations (6.46) and (6.47) can be combined together in the form,

∂

∂t
(KM + PM) +

1

ρ0

∇ · (ūap̄) =

= −∂y

(
ūu′v′ + b̄

v′b′

N2

)
+ u′v′∂yū+

v′b′

N2
∂y b̄+ ūḠ +

b̄B̄
N2

. (6.48)

The ocean is a strongly stratified fluid and most of the energy in the basic state is
stored as potential energy due to tilted isopycnal surfaces. This energy is converted
into mesoscale eddy motions mainly through baroclinic instabilities. Thus in equa-
tion (6.48) the buoyancy eddy flux terms typically dominate over the eddy momentum
flux terms.

The divergent terms represent transport of eddy activity from one region to another.
In a statistically steady state, we can assume that there is no net transport of mean
mechanical energy out of the domain considered. Neglecting the kinetic energy loss
terms and the divergent terms, we have that on average,

∂

∂t
(KM + PM)∼v

′b′

N2
∂y b̄+ external forcing. (6.49)

Baroclinic instability tends to extract potential energy from the mean state. The
simplest closure that would ensure that energy is always released from the mean
state and lost into the eddy filed is,

v′b′ = −K∂y b̄. (6.50)
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This closure scheme was first proposed by Gent and McWilliams in 1990, and it is
now in use in most coarse-resolution ocean models.

In terms of the TEM, this closure provide an estimate of the eddy induced circulation,

χc = −K∂y b̄

N2
(6.51)

The parameterization of Gent and McWilliams is thus equivalent to assuming that
the eddy induced circulation is proportional to the isopycnal slope. As long as mean
isopycnals are tilted, there is available potential energy to drive an eddy-induced
circulation.

In terms of the Transformed eulerian mean formalism the parameterization of Gent
and McWilliams is as a closure for the eddy forcing of the residual circulation, i.e.,

∇ · F ≈ −f0∂z

[
K
∂y b̄

N2

]
. (6.52)

In this closure the eddy stress is proportional to the isopycnal slope. In order to
satisfy conservation of mean momentum, it is customary to impose K = 0 at the
ocean surface and ocean bottom.
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6.6.2 The potential vorticity mixing argument

Numerous studies suggest that mesoscale eddies tend to mix potential vorticity along
isopycnals (Holland and Rhines 1980, Rhines 1982, Marshall 2000). In the quasi-
geostrophic approximation isopycnals are to leading order flat, and mixing occurs
along horizontal surfaces. Thus it might appear that an appropriate closure hypoth-
esis is to assume that PV is fluxed down its mean gradient. Unfortunately direct
numerical simulations of quasi-geostrophic turbulence show that PV eddy fluxes are
directed along mean PV contours, not across them. The conundrum turns out to be
related to the difference between the skew and the diffusive flux, and the difference
between PV and QGPV.

Let us consider the eddy buoyancy flux in the quasi-geostrophic approximation. We
wish to relate the Transformed Eulerian Mean approach to the theory of tracer trans-
port. This will allow a better understanding of the role of buoyancy and PV fluxes in
the quasi-gesotrophic approximation. First decompose the flux into skew and sym-
metric components as,(

v′b′

w′b′

)
=

 0 v′b′

N2

−v′b′

N2 0

( 0
N2

)
+

(
0

w′b′N2+v′b′b̄y

N2

)
(6.53)

=

(
0 χc

−χc 0

)(
0
N2

)
+

(
0 0

0 w′b′N2+v′b′b̄y

N2 .

)(
0
N2

)
(6.54)

The first bracket the Stokes drift generated by eddy transport along isopycnals; in
the quasi-geostrophic approximation the isopycnals are flat to leading order, therefore
the skew flux is due to the horizontal eddy flux. The second bracket represents the
symmetric flux: in the quasi-geostrophic approximation this flux is vertical and is
directed across the vertical gradient N2. It can be shown that the symmetric flux is
likely to be diffusive. Consider the buoyancy variance equation,

∂tb′2 +∇ · u′b′2 = −2v′b′b̄y − 2w′b′N2 + 2D, (6.55)
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where D represents all diabatic terms. In steady state and for homogenous eddy
statistics we have a balance between the generation of eddy variance by eddies and
the destruction by dissipation. This implies that the symmetric flux must be down the
vertical gradient, i.e. diffusive. However this flux is not of interest in quasi-geostropic
theories because it is O(Ro2). What matters is that by going into the Transformed
Eulerian Mean framework we include the Stokes drift into the definition of mean
velocity, and thus we eliminate the skew flux from the buoyancy equation. As we
have seen, this trick eliminates all eddy flux terms from the buoyancy equation. This
is true only in the quasi-geostrophic approximation, because the symmetric fluxes are
of higher order. In general by going into the Transformed Eulerian Mean framework,
one eliminates only the skew component of the eddy flux from the buoyancy budget,
but not the symmetric component.

With a better understanding of the buoyancy flux decomposition, we can now proceed
to analyze the PV budget. The full Ertel potential vorticity in the quasi-geostrophic
approximation is given by P = fN2 +fbz +ζN2. The eddy PV flux can be computed
easily,

u′P ′ = fu′b′z + u′ζ ′, (6.56)

=
[
fv′b′z + v′ζ ′

]
j +O(Ro2). (6.57)

Thus to leading order the eddy PV flux has only an horizontal component. It is
instructive to write the meridonal flux in the form,

v′P ′ = f∂z(v′b′) + v′ζ ′ (6.58)

= f
∂

∂z

(
v′b′

N2
N2

)
+ v′ζ ′ (6.59)

= f
v′b′

N2
∂z(N

2) + fN2 ∂

∂z

(
v′b′

N2

)
. (6.60)

Using the fact that P̄z = ∂z(fN
2) + O(Ro) and that v′z = f−1b′x + O(Ro) we can

simplify the expression as,

v′P ′ =
v′b′

N2
P̄z +N2v′q′ +O(Ro2). (6.61)

Using this relation we can write the full Ertel PV flux as the sum of skew and sym-
metric components,(

v′P ′

w′P ′

)
=

(
0 χc

−χc 0

)(
0
P̄z

)
+

 v′P ′ − v′b′

N2 P̄z

w′P ′ + v′b′

N2 P̄y

 . (6.62)

To leading order this relation is,(
v′P ′

w′P ′

)
=

(
0 χc

−χc 0

)(
0
P̄z

)
+N2

(
v′q′

0

)
(6.63)
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In this form we see that the Ertel PV flux is composed of an advective skew component
and a residual component, which happens to be proportional to the QGPV. In the
lecture on passive tracer transport we emphasized that the residual flux tends to mix
across tracer contours, while the skew component does not mix. Furthermore the
skew component is typically much larger than the residual component. Similarly in
this problem, the skew component advects PV around and dominates the full PV
flux, but it is the residual flux that achieves mixing. This can be demonstrated by
considering the QGPV variance budget,

∂tq′2 + ∂yv′q′2 = −2v′q′q̄y + 2D. (6.64)

this suggests that in steady state for homogeneous turbulence, the eddy QGPV flux
must be down its mean gradient,

v′q′ = −Kq̄y. (6.65)

Plugging this closure in the expression for the Eliassen-Palm fluxes gives,

∇ · F = v′q′ = −K
[
β − ∂yyū+ f0∂z

(
∂y b̄

N2

)]
. (6.66)

This expression for the eddy forcing of the residual circulation differs from that
in (6.52). The two expressions are equivalent if 1) K is constant, 2) there is no
planetary PV gradient (β = 0), and 3) PV is dominated by the baroclinic term.
In the ocean condition 3 is often satisfied. Condition 2 is harder to assess, because
it depends on whether eddies mix on distances large enough to feel the effect of β.
Condition 1 instead cannot be satisfied, because one needs to impose K = 0 at the
boundaries in the Gent-McWilliams parameterization and therefore K cannot be con-
stant. Thus the two closure schemes are different. It is open to debate which approach
is more appropriate. A good discussion can be found in the paper by Treguier et al.
(1997).
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