Change of Coordinates (non-orthogonal)

Different vertical coordinates

Suppose we have a property $S(x, y, z, t)$ and want to express it as $S(x, y, \xi, t)$ in terms of a different vertical coordinate $\xi=\xi(x, y, z, t)$ - e.g., pressure, so that we look at the temperature vs. latitude and longitude on the 500 mb surface or the 750 mb surface. What is the relationship between derivatives like the rate of change with x along a horizontal line $\left(\frac{\partial S}{\partial x}\right)_{z}$ and the rate of change with horizontal distance along a constant ξ surface $\left(\frac{\partial S}{\partial x}\right)_{\xi}$? Let us look at this graphically:

The derivatives in question are

$$
\left(\frac{\partial S}{\partial x}\right)_{z}=\frac{S_{3}-S_{1}}{x_{2}-x_{1}} \quad, \quad\left(\frac{\partial S}{\partial x}\right)_{\xi}=\frac{S_{2}-S_{1}}{x_{2}-x_{1}}
$$

We can relate these two by using the vertical changes

$$
S_{2}-S_{3}=\left(\frac{\partial S}{\partial z}\right)_{x}\left(z_{2}-z_{1}\right)=\left(\frac{\partial S}{\partial \xi}\right)_{x}\left(\xi_{2}-\xi_{1}\right)
$$

Using this to eliminate S_{3} from the rate of change along a horizontal surface gives

$$
\begin{aligned}
\left(\frac{\partial S}{\partial x}\right)_{z} & =\frac{S_{3}-S_{2}}{x_{2}-x_{1}}+\frac{S_{2}-S_{1}}{x_{2}-x_{1}} \\
& =\frac{S_{2}-S_{1}}{x_{2}-x_{1}}-\left(\frac{\partial S}{\partial \xi}\right)_{x} \frac{\xi_{2}-\xi_{1}}{x_{2}-x_{1}} \\
& =\left(\frac{\partial S}{\partial x}\right)_{\xi}-\left(\frac{\partial S}{\partial \xi}\right)_{x} \frac{z_{2}-z_{1}}{x_{2}-x_{1}} \frac{\xi_{2}-\xi_{1}}{z_{2}-z_{1}} \\
& =\left(\frac{\partial S}{\partial x}\right)_{\xi}-\left(\frac{\partial S}{\partial \xi}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{\xi} /\left(\frac{\partial z}{\partial \xi}\right)_{x}
\end{aligned}
$$

Likewise

$$
\left(\frac{\partial S}{\partial z}\right)_{x}=\left(\frac{\partial S}{\partial \xi}\right)_{x} /\left(\frac{\partial z}{\partial \xi}\right)_{x}
$$

Thus, to change coordinates we replace $\frac{\partial S}{\partial x}$ by

$$
\left(\frac{\partial S}{\partial x}\right)_{z} \rightarrow\left(\frac{\partial S}{\partial x}\right)_{\xi}-\left(\frac{\partial S}{\partial \xi}\right)_{x} \frac{\left(\frac{\partial z}{\partial x}\right)_{\xi}}{\left(\frac{\partial z}{\partial \xi}\right)_{x}}
$$

with similar forms for $\frac{\partial S}{\partial y}$ and $\frac{\partial S}{\partial t}$; the vertical replacement is

$$
\left(\frac{\partial S}{\partial z}\right)_{x} \rightarrow \frac{\left(\frac{\partial S}{\partial \xi}\right)_{x}}{\left(\frac{\partial z}{\partial \xi}\right)_{x}}
$$

Math note: General coordinate change

There is a fairly straightforward mathematical procedure for changing coordinates from one system to another, even if the second is not orthogonal. Suppose we have a function $S(\mathbf{x})$ and wish to express it and its derivatives as functions of the new coordinates ξ. We could use the chain rule to find

$$
\begin{equation*}
\frac{\partial S}{\partial x_{i}}=\frac{\partial \xi_{j}}{\partial x_{i}} \frac{\partial S}{\partial \xi_{j}} \tag{1}
\end{equation*}
$$

But this may not be adequate, for the following reason. We wish to have coefficients in the final equations expressed as functions of the new coordinates; however, quantities such as

$$
\frac{\partial \xi_{1}}{\partial x_{3}}
$$

are more likely to be known as functions of \mathbf{x}.
To accomplish the goal of having all terms expressed in the new coordinates, we begin with the opposite form

$$
\begin{equation*}
\frac{\partial S}{\partial \xi_{i}}=\frac{\partial x_{j}}{\partial \xi_{i}} \frac{\partial S}{\partial x_{j}} \quad \text { or } \quad \nabla_{x} S=\mathbf{T} \nabla_{\xi} S \tag{2}
\end{equation*}
$$

and assume that the $\frac{\partial x_{j}}{\partial \xi_{i}}$ terms are functions of $\boldsymbol{\xi}$. We can express derivatives in the old coordinate system in terms of derivates in the new system by inverting the transformation matrix:

$$
\begin{equation*}
\frac{\partial S}{\partial x_{i}}=\left[\frac{\partial x_{i}}{\partial \xi_{j}}\right]^{-1} \frac{\partial S}{\partial \xi_{j}} \quad \text { or } \quad \nabla_{\xi} S=\mathbf{T}^{-1} \nabla_{x} S \tag{3}
\end{equation*}
$$

In terms of the Jacobian matrix

$$
\frac{\partial(A, B, C)}{\partial\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} \equiv \operatorname{det}\left(\begin{array}{ccc}
\frac{\partial A}{\partial \xi_{1}} & \frac{\partial A}{\partial \xi_{2}} & \frac{\partial A}{\partial \xi_{3}} \\
\frac{\partial B}{\partial \xi_{1}} & \frac{\partial B}{\partial \xi_{2}} & \frac{\partial B}{\partial \xi_{3}} \\
\frac{\partial C}{\partial \xi_{1}} & \frac{\partial C}{\partial \xi_{2}} & \frac{\partial C}{\partial \xi_{3}}
\end{array}\right)
$$

we have

$$
\frac{\partial S}{\partial x_{1}}=\frac{\partial\left(S, x_{2}, x_{3}\right)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}=\frac{\partial\left(S, x_{2}, x_{3}\right)}{\partial\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} / \frac{\partial\left(x_{1}, x_{2}, x_{3}\right)}{\partial\left(\xi_{1}, \xi_{2}, \xi_{3}\right)}
$$

etc.
Example
If we take polar coordinates as a specific case, we have the relationship between the old and new coordinates

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z^{\prime}
\end{aligned}
$$

So that the transformation matrix matrix $T i j=\frac{\partial x_{j}}{\partial \xi_{i}}$ in (2) is

$$
\mathbf{T}=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-r \sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The inverse is

$$
\mathbf{T}^{-1}=\left(\begin{array}{ccc}
\cos \theta & -\frac{1}{r} \sin \theta & 0 \\
\sin \theta & \frac{1}{r} \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

so that

$$
\begin{aligned}
& \psi_{x}=\cos \theta \psi_{r}-\frac{1}{r} \sin \theta \psi_{\theta} \\
& \psi_{y}=\sin \theta \psi_{r}+\frac{1}{r} \cos \theta \psi_{\theta} \\
& \psi_{z}=\psi_{z^{\prime}}
\end{aligned}
$$

using subscript notation for derivatives.

Change in vertical coordinate

If we switch from x, y, z to $x^{\prime}, y^{\prime}, \xi$, the transformation matrix is

$$
\mathbf{T}=\left(\begin{array}{ccc}
1 & 0 & \frac{\partial z}{\partial x^{\prime}} \\
0 & 1 & \frac{\partial z}{\partial y^{\prime}} \\
0 & 0 & \frac{\partial z}{\partial \xi}
\end{array}\right)
$$

and its inverse is

$$
\mathbf{T}^{-1}=\left(\begin{array}{ccc}
1 & 0 & -\frac{\partial z}{\partial x^{\prime}} / \frac{\partial z}{\partial \xi} \\
0 & 1 & -\frac{\partial z}{\partial y^{\prime}} / \frac{\partial z}{\partial \xi} \\
0 & 0 & 1 / \frac{\partial z}{\partial \xi}
\end{array}\right)
$$

Thus we can replace horizontal gradients

$$
\nabla \longrightarrow \nabla-\frac{\nabla z}{z_{\xi}} \frac{\partial}{\partial \xi}
$$

vertical derivatives

$$
\frac{\partial}{\partial z} \longrightarrow \frac{1}{z_{\xi}} \frac{\partial}{\partial \xi}
$$

and time derivatives

$$
\frac{\partial}{\partial t} \longrightarrow \frac{\partial}{\partial t}-\frac{z_{t}}{z_{\xi}} \frac{\partial}{\partial \xi}
$$

in our original equations.
First, we note that the material derivative becomes

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+\mathbf{u} \cdot \nabla+\frac{1}{z_{\xi}}\left(w-z_{t}-\mathbf{u} \cdot \nabla z\right) \frac{\partial}{\partial \xi}
$$

and we can define the "vertical" velocity ω as

$$
\omega=\frac{1}{z_{\xi}}\left(w-z_{t}-\mathbf{u} \cdot \nabla z\right)
$$

so that the material derivative becomes

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+\mathbf{u} \cdot \nabla+\omega \frac{\partial}{\partial \xi}
$$

With this definition, we note that $w=\frac{D}{D t} z$ as we might expect.

Transformed equations

The horizontal momentum equations become

$$
\begin{equation*}
\frac{D}{D t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u}=-\frac{1}{\rho} \nabla p-\nabla \varphi \tag{e.1}
\end{equation*}
$$

with $\varphi=g z$ being the geopotential; the hydrostatic balance is

$$
\begin{equation*}
\frac{\partial}{\partial \xi} \varphi=-\frac{1}{\rho} \frac{\partial}{\partial \xi} p \tag{e.2a}
\end{equation*}
$$

while the conservation of mass gives

$$
\frac{1}{\rho} \frac{D}{D t} \rho+\nabla \cdot \mathbf{u}-\frac{1}{z_{\xi}} \mathbf{u}_{\xi} \cdot \nabla z+\frac{1}{z_{\xi}} \frac{\partial}{\partial \xi}\left(\frac{D}{D t} z\right)=0
$$

implying

$$
\frac{1}{\rho} \frac{D}{D t} \rho+\frac{1}{z_{\xi}} \frac{D}{D t} z_{\xi}+\nabla \cdot \mathbf{u}+\frac{\partial}{\partial \xi} \omega
$$

or

$$
\begin{equation*}
\frac{1}{p_{\xi}} \frac{D}{D t} p_{\xi}+\nabla \cdot \mathbf{u}+\frac{\partial}{\partial \xi} \omega=0 \tag{e.3}
\end{equation*}
$$

or

$$
\frac{\partial}{\partial t} h+\nabla \cdot(h \mathbf{u})=0 \quad \text { with } \quad h=\text { const. } * p_{\xi}
$$

Finally, the thermodynamic equation becomes

$$
\begin{equation*}
\frac{D}{D t} \rho-\frac{1}{c_{s}^{2}} \frac{D}{D t} p=0 \tag{e.4a}
\end{equation*}
$$

in general. The potential vorticity (with η being the entropy) is

$$
\begin{equation*}
q=-\frac{g}{p_{\xi}}\left(\nabla_{3} \times \mathbf{u}+f \hat{\mathbf{k}}\right) \cdot \nabla_{3} \eta \tag{e.5}
\end{equation*}
$$

with the ∇_{3} notation indicating the vertical derivatives are included.

Vertical coordinate function of pressure

When the vertical coordinate is a function of pressure $\xi=\xi(p)$ or $p=p(\xi)$, we can define $p_{\xi} \equiv-g \rho_{c}(\xi)$ and simplify the hydrostatic equation to

$$
\frac{\partial}{\partial \xi} \varphi=g \frac{\rho_{c}}{\rho} \equiv b+g
$$

We can replace $\varphi=\varphi^{\prime}+g \xi$ to get

$$
\frac{\partial}{\partial \xi} \varphi^{\prime}=b
$$

The equations become (dropping the ${ }^{\prime}$ in φ)

$$
\begin{gather*}
\frac{D}{D t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u}=-\nabla \varphi \tag{p.1}\\
\frac{\partial}{\partial \xi} \varphi=b \tag{p.2}\\
\nabla \cdot \mathbf{u}+\frac{1}{\rho_{c}} \frac{\partial}{\partial \xi}\left(\rho_{c} \omega\right)=0 \tag{p.3}\\
\frac{D}{D t} \rho+\omega \frac{g \rho_{c}}{c_{s}^{2}}=0 \quad \text { or } \quad \frac{D}{D t} b+\omega\left[-g \frac{\rho_{c \xi}}{\rho}-\frac{g^{2} \rho_{c}^{2}}{\rho^{2} c_{s}^{2}}\right]=0
\end{gather*}
$$

The last equation can also be written

$$
\frac{\partial}{\partial t} b+\mathbf{u} \cdot \nabla b+\omega\left[b_{\xi}-(g+b) \frac{\rho_{c \xi}}{\rho_{c}}-\frac{(g+b)^{2}}{c_{s}^{2}}\right]=0
$$

or

$$
\begin{equation*}
\frac{\partial}{\partial t} b+\mathbf{u} \cdot \nabla b+\omega \mathcal{S}=0 \tag{p.4}
\end{equation*}
$$

with the stratification parameter \mathcal{S}

$$
\begin{equation*}
\mathcal{S} \equiv \frac{\rho_{c}^{2}}{\rho^{2}} N^{2}=b_{\xi}-(g+b) \frac{\rho_{c \xi}}{\rho_{c}}-\frac{(g+b)^{2}}{c_{s}^{2}} \tag{p.5a}
\end{equation*}
$$

defined in terms of the Brunt-Väisälä frequency

$$
\begin{equation*}
N^{2}=-g \frac{1}{\rho} \frac{\partial}{\partial z} \rho-\frac{g^{2}}{c_{s}^{2}}=-g \frac{\rho_{\xi}}{\rho_{c}}-\frac{g^{2}}{c_{s}^{2}}=\frac{g^{2}}{(g+b)^{2}} b_{\xi}-\frac{g^{2}}{(g+b)} \frac{\rho_{c \xi}}{\rho_{c}}-\frac{g^{2}}{c_{s}^{2}} \tag{p.5b}
\end{equation*}
$$

The PV is

$$
\begin{equation*}
q=\frac{1}{\rho_{c}}\left(\nabla_{3} \times \mathbf{u}+f \hat{\mathbf{k}}\right) \cdot \nabla_{3} \eta \tag{p.6}
\end{equation*}
$$

We shall use eqns. p1-p4 as our basic set.

The boundary conditions are a bit tricky; if the bottom is at $z=h(x, y)$, we get an implicit equation for the surface pressure $\xi_{s}(x, y, t)$:

$$
\begin{equation*}
\varphi\left(x, y, \xi_{s}(x, y, t), t\right)+g \xi_{s}=g h(x, y) \tag{b.1}
\end{equation*}
$$

We also have the kinematic condition

$$
w\left(=\frac{D}{D t} z\right)=\frac{D}{D t} h \quad \Rightarrow \quad \frac{D}{D t}(\varphi-g h)=0
$$

Together, these two imply

$$
\begin{equation*}
\omega=\frac{D}{D t} \xi_{s} \quad \text { at } \quad \xi=\xi_{s} \tag{b.2}
\end{equation*}
$$

Thermodynamics

For an ideal gas, we can simplify the thermodynamics using $\eta=c_{p} \ln \theta$

$$
\begin{equation*}
\frac{D}{D t} \theta=0 \tag{p.7}
\end{equation*}
$$

with the potential temperature being

$$
\theta=\theta_{0} \frac{\rho_{0}}{\rho}\left(\frac{p}{p_{0}}\right)^{1 / \gamma}
$$

$\left(\gamma=c_{p} / c_{v}\right)$. Thus, the buoyancy becomes

$$
\begin{equation*}
b=g \frac{\rho_{c}}{\rho_{0}}\left(\frac{p}{p_{0}}\right)^{-1 / \gamma} \frac{\theta}{\theta_{0}}-g \equiv G(\xi) \frac{\theta}{\theta_{0}} \tag{p.8}
\end{equation*}
$$

With a little work, you can substitute ($p .8$) into ($p .4$), using $c_{s}^{2}=\gamma p / \rho$, to show that ($p .7$) holds. The Brunt-Väisälä frequency is

$$
N^{2}=g \frac{\partial}{\partial z} \ln \theta=g \frac{\rho}{\rho_{c}} \frac{\partial}{\partial \xi} \ln \theta \quad, \quad \mathcal{S}=g \frac{\rho_{c}}{\rho} \frac{\partial}{\partial \xi} \ln \theta
$$

Linearized equations

The wave equations for this system are

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u} & =-\nabla \phi^{\prime} \\
\frac{\partial}{\partial \xi} \phi^{\prime} & =b^{\prime} \\
\nabla \cdot \mathbf{u}+\frac{1}{\rho_{c}} \frac{\partial}{\partial \xi}\left(\rho_{c} \omega\right) & =0 \\
\frac{\partial}{\partial t} b^{\prime}+\omega \overline{\mathcal{S}} & =0
\end{aligned}
$$

If we make the particular choice of $\rho_{c}=\bar{\rho}$, so that ξ is just the height in the resting atmosphere, we have $\bar{b}=g, \overline{\mathcal{S}}=\overline{N^{2}}$, and the equations look like the Boussinesq form except for the $\bar{\rho}$ factors in the stretching term. We can separate variables

$$
\mathbf{u} \rightarrow \mathbf{u}(\mathbf{x}, t) F(z) \quad, \quad \phi^{\prime} \rightarrow \phi^{\prime}(\mathbf{x}, t) F(z) \quad, \quad b^{\prime} \rightarrow b^{\prime}(\mathbf{x}, t) \frac{\partial F}{\partial \xi} \quad, \quad \omega=-\frac{\partial \phi^{\prime}}{\partial t} \frac{1}{\overline{N^{2}}} \frac{\partial F}{\partial \xi}
$$

The mass conservation equation gives

$$
\frac{\partial \phi^{\prime}}{\partial t}\left[-\frac{1}{\bar{\rho}} \frac{\partial}{\partial \xi} \frac{\bar{\rho}}{\overline{N^{2}}} \frac{\partial}{\partial \xi} F\right]+\nabla \cdot \mathbf{u} F=0
$$

giving again the vertical structure eigenvalue equation

$$
\frac{1}{\bar{\rho}} \frac{\partial}{\partial \xi} \frac{\bar{\rho}}{\overline{N^{2}}} \frac{\partial}{\partial \xi} F=-\frac{1}{g H_{e}} F
$$

and the horizontal equations

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u} & =-\nabla \phi^{\prime} \\
\frac{1}{g H_{e}} \frac{\partial \phi^{\prime}}{\partial t}+\nabla \cdot \mathbf{u} & =0
\end{aligned}
$$

The lower boundary condition gives the surface pressure

$$
\frac{\partial \bar{\phi}}{\partial \xi} \xi_{s}+\phi^{\prime}(\mathbf{x}, 0, t) \simeq 0 \quad \Rightarrow \quad \xi_{s}=-\frac{1}{g} \phi^{\prime}(\mathbf{x}, t) F(0)
$$

and its evolution

$$
\frac{\partial \xi_{s}}{\partial t}=\omega(\mathbf{x}, 0, t)=-\frac{\partial \phi^{\prime}}{\partial t} \frac{1}{\overline{N^{2}}} \frac{\partial F}{\partial \xi} \quad \Rightarrow \quad \frac{\partial F}{\partial \xi}=\frac{\overline{N^{2}}}{g} F \quad \text { at } \quad \xi=0
$$

Often, however, the simpler condition $\omega=0 \Rightarrow \frac{\partial F}{\partial \xi}=0$ is used.

Isothermal atmosphere

One case that can be worked out completely is the isothermal basic state. Using the gas law gives $\bar{p}=\bar{\rho} R T$; the hydrostatic equation then gives

$$
\bar{p}=p_{0} \exp \left(-z / H_{s}\right) \quad, \quad \bar{\rho}=\rho_{0} \exp \left(-z / H_{s}\right) \quad, \quad H_{s}=R T / g \quad, \quad p_{0}=\rho_{0} g H_{s}
$$

- the density decays exponentially with a scale height H_{s}. We can just choose $\xi=$ $H_{s} \ln \left(p_{0} / p\right)$ so that it's the same as height. The associated density $\rho_{c}=\bar{\rho}$ as before. When we calculate the Brunt-Väisälä frequency, we get

$$
\overline{N^{2}}=\frac{g}{H_{s}}-\frac{g^{2}}{c_{s}^{2}}=\frac{g}{H_{s}}\left[1-\frac{c_{v}}{c_{p}}\right]=\frac{g}{H_{s}} \frac{R}{c_{p}}
$$

and discover that it is constant. The vertical structure equation becomes

$$
\frac{\partial^{2} F}{\partial \xi^{2}}-\frac{1}{H_{s}} \frac{\partial F}{\partial \xi}=-\frac{1}{H_{s} H_{e}} \frac{R}{c_{p}} F
$$

Therefore F will have exponential solutions

$$
F=\exp \left(\alpha z / H_{s}\right) \quad, \quad \alpha^{2}-\alpha+\frac{H_{s}}{H_{e}} \frac{R}{c_{p}}=0 \quad, \quad \alpha=\frac{1}{2} \pm \frac{1}{2} \sqrt{1-4 \frac{R}{c_{p}} \frac{H_{s}}{H_{e}}}
$$

If we start with the case when the argument of the square root is positive, we must eliminate the large root, since it has an energy density $\bar{\rho} u^{2} \sim \exp \left([2 \alpha-1] \xi / H_{s}\right)$ which grows towards infinity. Therefore we can only accept the negative sign, giving

$$
F=\exp \left(\left[1-\sqrt{1-4 \frac{R}{c_{p}} \frac{H_{s}}{H_{e}}}\right] \frac{\xi}{2 H_{s}}\right)
$$

The lower boundary condition gives (for $\omega=0$)

$$
\alpha=0 \quad \Rightarrow \quad \frac{1}{g H_{e}} \rightarrow 0 \quad, \quad F=1
$$

or for the full condition

$$
\alpha=\frac{H_{s} \overline{N^{2}}}{g}=\frac{R}{c_{p}} \quad \Rightarrow \quad H_{e}=\frac{H_{s}}{1-\frac{R}{c_{p}}}=\frac{c_{p}}{c_{v}} H_{s} \quad, \quad F=\exp \left(\frac{R}{c_{p}} \frac{\xi}{H_{s}}\right)
$$

which will be well-behaved as long as $c_{p}>2 R$ (for the atmosphere $c_{v}, c_{p}, R=718,1005$, 287.1 $\mathrm{J} / \mathrm{kg} / \mathrm{K}^{\mathrm{o}}$ (Tsonis, An Introduction to Atmospheric Thermodynamics) so that this condition is fine. The equivalent depth is 40% larger than the scale height. Over one scale height, F grows by a factor of $\exp \left(R / c_{p}\right)=1.33$ while the kinetic energy density decreases by $\exp \left(2 \frac{R}{c_{p}}-1\right)=0.65$. This is called the equivalent barotropic mode.

Are there any other modes? The derivation above makes it clear that this is the only mode with $H_{e}>4\left(R / c_{p}\right) H_{s}=1.14 H_{s}$. What about the modes with complex α which have energies remaining order one at infinity? The lower boundary condition clearly requires both the α_{+}and α_{-}modes; however, the latter will have downward energy flux. To maintain such a mode, we require a reflecting surface or an energy source high in the atmosphere. This will not happen for a resting atmosphere; therefore, the only mode available is the equivalent barotropic mode.

Special cases of the pressure-like equations

Pressure coords
In the atmosphere, the standard choice is pressure coordinates $\xi=p$

$$
\begin{aligned}
\frac{D}{D t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u} & =-\nabla \varphi+G(p) \frac{\theta}{\theta_{0}} \hat{\mathbf{k}} \\
\nabla \cdot \mathbf{u}+\omega_{p} & =0 \\
\frac{D}{D t} \theta & =0 \\
G & =-\frac{R \theta_{0}}{p_{0}}\left(\frac{p}{p_{0}}\right)^{-1 / \gamma}
\end{aligned}
$$

or

$$
\begin{aligned}
\frac{D}{D t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u} & =-\nabla \varphi+b \hat{\mathbf{k}} \\
\nabla \cdot \mathbf{u}+\omega_{p} & =0 \quad \text { with } \quad b=G(p) \frac{\theta}{\theta_{0}} \\
\frac{D}{D t} b+\omega b \frac{1}{\gamma p} & =0
\end{aligned}
$$

$\log p$
But the log form is also convenient especially if we work with a near-isothermal stratification so that $\bar{\rho}=\rho_{c}=\rho_{0} \exp (-\xi / H)$

$$
\begin{aligned}
& \frac{D}{D t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u}=-\nabla \varphi+g(\theta / \bar{\theta}) \hat{\mathbf{k}} \\
& \nabla \cdot \mathbf{u}+\left(\frac{\partial}{\partial \xi}-\frac{1}{H}\right) \omega=0 \\
& \frac{D}{D t} \theta=0 \\
& q=\frac{1}{\bar{\rho}}\left(\nabla_{3} \times \mathbf{u}+f \hat{\mathbf{k}}\right) \cdot \nabla_{3} \ln \theta \\
& Q=\nabla^{2} \psi+\frac{f^{2}}{\overline{N^{2}}}\left(\frac{\partial}{\partial \xi}-\frac{1}{H}\right) \frac{\partial}{\partial \xi} \psi+f \\
& \bar{\rho}=\rho_{0} e^{-\xi / H} \quad, \quad \overline{N^{2}}=\frac{g}{H} \frac{\gamma-1}{\gamma} \quad, \quad \bar{\theta}=\theta_{0} e^{(\gamma-1) \xi / \gamma H}
\end{aligned}
$$

For both systems, the choice with ξ corresponding to the resting atmosphere so that $\rho_{c}=\bar{\rho}$ gives a quasi-Boussinesq model

$$
\begin{aligned}
\frac{D}{D t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u} & =-\nabla \varphi+b \hat{\mathbf{k}} \\
\nabla \cdot \mathbf{u}+\frac{1}{\bar{\rho}} \frac{\partial}{\partial \xi}(\bar{\rho} \omega) & =0 \\
\frac{\partial}{\partial t} b+\mathbf{u} \cdot \nabla b+\omega \mathcal{S} & =0 \\
q & =\frac{1}{\bar{\rho}}\left(\nabla_{3} \times \mathbf{u}+f \hat{\mathbf{k}}\right) \cdot \nabla_{3} \eta \\
Q & =\nabla^{2} \psi+\frac{1}{\bar{\rho}} \frac{\partial}{\partial \xi} \bar{\rho} \frac{f^{2}}{\overline{N^{2}}} \frac{\partial}{\partial \xi} \psi+f \\
\overline{\mathcal{S}}=\overline{N^{2}} & =-g \frac{\bar{\rho}_{\xi}}{\bar{\rho}}-\frac{g^{2}}{\bar{c}_{s}^{2}} \quad, \quad b=g \frac{\theta}{\bar{\theta}} \quad, \quad \overline{N^{2}}=g \frac{\partial}{\partial \xi} \ln \bar{\theta}
\end{aligned}
$$

For the ocean, we usually use $\left(p_{0}-p\right) / \rho_{0} g$ and ignore the difference between \mathcal{S} and N^{2}, giving a Boussinesq form

$$
\begin{aligned}
& \frac{D}{D t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u}=-\nabla \varphi+\tilde{b} \hat{\mathbf{k}} \\
& \nabla \cdot \mathbf{u}+\omega_{\xi}=0 \\
& \frac{D}{D t} \tilde{b}=0 \\
& q=\frac{1}{\rho_{0}}\left(\nabla_{3} \times \mathbf{u}+f \hat{\mathbf{k}}\right) \cdot \nabla_{3} b \\
& Q=\nabla^{2} \psi+\frac{\partial}{\partial \xi} \frac{f^{2}}{\overline{N^{2}}} \frac{\partial}{\partial \xi} \psi+f \\
& \tilde{b}=b-\frac{g^{2}}{c_{s}^{2}} \xi \quad, \quad \mathcal{S} \simeq b_{\xi}-\frac{g^{2}}{c_{s}^{2}}
\end{aligned}
$$

Summary table

ξ	ρ_{c}	G	$\overline{\mathcal{S}}(\mathrm{atm}),. \overline{\mathcal{S}}(\mathrm{oc}$.
p	$-1 / g$	$-\frac{R}{p_{0}}\left(\frac{\xi}{p_{0}}\right)^{-1 / \gamma}$	$-\frac{1}{\bar{\rho}} \frac{\partial}{\partial \xi} \ln \bar{\theta}$
$\left(p_{0}-p\right) / \rho_{0} g$	ρ_{0}	$\frac{g}{\theta_{0}}\left(1-\frac{\xi}{H}\right)^{-1 / \gamma}$	$\begin{aligned} & g \frac{\rho_{0}}{\bar{\rho}} \frac{\partial}{\partial \xi} \ln \bar{\theta} \\ & \frac{\rho_{0}^{2}}{\bar{\rho}^{2}} \frac{N^{2}}{N^{2}} \simeq \overline{N^{2}} \end{aligned}$
$-H \ln \frac{p}{p_{0}}$	$\rho_{0} e^{-\xi / H}$	$\frac{g}{\theta_{0}} \exp \left(-\frac{\gamma-1}{\gamma} \frac{\xi}{H}\right)$	$g \frac{\rho_{0} e^{-\xi / H}}{\bar{\rho}} \frac{\partial}{\partial \xi} \ln \bar{\theta}$
$\frac{H \gamma}{\gamma-1}\left[1-\left(\frac{p}{p_{0}}\right)^{(\gamma-1) / \gamma}\right]$	$\rho_{0}\left[1-\frac{\xi}{H} \frac{\gamma-1}{\gamma}\right]^{1 /(\gamma-1)}$	$\frac{g}{\theta_{0}}$	$g \frac{\rho_{0}}{\bar{\rho}}\left[1-\frac{\xi}{H} \frac{\gamma-1}{\gamma}\right]^{\frac{1}{(\gamma-1)}} \frac{\partial}{\partial \xi} \ln \bar{\theta}$
$-\int_{p_{0}}^{p} d p^{\prime} \frac{p^{\prime}}{\bar{\rho}\left(p^{\prime}\right) g}$	$\bar{\rho}$	$\frac{\underline{g}}{\theta}$	$g \frac{\partial}{\partial \xi} \ln \bar{\theta}$

In this chart, p_{0} and ρ_{0} are reference values; the scale height is related to these two by $g H=R T_{0}=R \theta_{0}=p_{0} / \rho_{0}$.

