Change of Coordinates (non—orthogonal)

Different vertical coordinates

Suppose we have a property S(z,y, z,t) and want to express it as S(x,y,§,t) in terms
of a different vertical coordinate £ = £(x,y, z,t) — e.g., pressure, so that we look at the
temperature vs. latitude and longitude on the 500mb surface or the 750mb surface. What
is the relationship between derivatives like the rate of change with x along a horizontaaél line

(%)Z and the rate of change with horizontal distance along a constant & surface ( %) 5?

Let us look at this graphically:
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We can relate these two by using the vertical changes

Sy — S5 = (g—i)x (20 — 21) = (%)m (&2 —&1)

Using this to eliminate S3 from the rate of change along a horizontal surface gives
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Likewise
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Thus, to change coordinates we replace 85 by
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with similar forms for 2 —y and 22: the vertical replacement is
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Math note: General coordinate change

There is a fairly straightforward mathematical procedure for changing coordinates
from one system to another, even if the second is not orthogonal. Suppose we have a
function S(x) and wish to express it and its derivatives as functions of the new coordinates
&. We could use the chain rule to find
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But this may not be adequate, for the following reason. We wish to have coefficients in the
final equations expressed as functions of the new coordinates; however, quantities such as

%
81’3

are more likely to be known as functions of x.
To accomplish the goal of having all terms expressed in the new coordinates, we begin
with the opposite form
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or V;S8=TV,S (2)

and assume that the —5 terms are functions of £&. We can express derivatives in the old
coordinate system in terms of derivates in the new system by inverting the transformation
matrix:

or VeS=T7'V.S (3)
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In terms of the Jacobian matrix
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etc.
Example

If we take polar coordinates as a specific case, we have the relationship between the
old and new coordinates

z =rcost
y =rsinf
z=2z

So that the transformation matrix matrix Tij = gig in (2) is

cos 0 sinf 0
T = | —rsinf rcosf 0
0 0 1
The inverse is
cos —% sind 0
T ! = | sind %cos@ 0
0 0 1

so that ]
Y = cos Y, — . sin 6 g
1
Yy = sind P, + - cos 6 1y
wz = wz’

using subscript notation for derivatives.



Change in vertical coordinate
If we switch from z, y, z to 2/, v/, &, the transformation matrix is
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and its inverse is
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Thus we can replace horizontal gradients
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vertical derivatives
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and time derivatives
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in our original equations.
First, we note that the material derivative becomes

D 0 1 0
D= E+u~v+g(w—zt—u-v,z)a—€
and we can define the “vertical” velocity w as

1
w=—(w-—2z—u-Vz)
23

so that the material derivative becomes

D_9 +u-V+ cu2
Dt Ot o
With this definition, we note that w = %z as we might expect.



Transformed equations

The horizontal momentum equations become

%u-l— fkxu= —%Vp -V (e.1)

with ¢ = gz being the geopotential; the hydrostatic balance is
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while the conservation of mass gives
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or 5
&h +V.(hu) =0 with h=const.*p;g
Finally, the thermodynamic equation becomes
D 1 D
[ —_—— — p— '4
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in general. The potential vorticity (with 1 being the entropy) is
q= —i(V:), x u+ fk)- Vsn (e.5)
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with the V3 notation indicating the vertical derivatives are included.



Vertical coordinate function of pressure

When the vertical coordinate is a function of pressure £ = £(p) or p = p(&), we can

define pe = —gp.(§) and simplify the hydrostatic equation to
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We can replace ¢ = ¢’ + g€ to get
/
P
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The equations become (dropping the " in ¢)
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The last equation can also be written
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with the stratification parameter S
2 2
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defined in terms of the Brunt-Vaisala frequency
1 2 2 2 2,
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The PV is 1
q= p—(Vg xu+ fk)-Vsn

We shall use eqns. pl-p4 as our basic set.
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The boundary conditions are a bit tricky; if the bottom is at z = h(x,y), we get an

implicit equation for the surface pressure &,(z, vy, t):

o(z,y,&s(x,y,t),t) + g§s = gh(z,y)

We also have the kinematic condition
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Together, these two imply
D
= — s t = (s
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Thermodynamics

For an ideal gas, we can simplify the thermodynamics using 7 = ¢, In 0
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with the potential temperature being

1/v
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(7 = ¢p/cy). Thus, the buoyancy becomes
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With a little work, you can substitute (p.8) into (p.4), using ¢ = vp/p, to show that (p.7)

holds. The Brunt-Viisala frequency is



Linearized equations

The wave equations for this system are

atu—i—fk xu=-V¢

9,
\Y u-l-ic%(pcw) =0
ab'-l—wS:

If we make the particular choice of p. = p, so that £ is just the height in the resting
atmosphere, we have b = g, S = N2, and the equations look like the Boussinesq form
except for the p factors in the stretching term. We can separate variables

woux)FG) . ¢ @& OFE) . VB, t)%? R AR

The mass conservation equation gives
09’ 10 p 0
ot

and the horizontal equations
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The lower boundary condition gives the surface pressure

1
?mm D20 > &= —dxOF(0)
and its evolution
& B B 09’ 1 OF oOF B N2
5 =w(x,0,t) = or N3 ¢ = o gF at £€=0

Often, however, the simpler condition w =0 = %—? =0 is used.



Isothermal atmosphere

One case that can be worked out completely is the isothermal basic state. Using the
gas law gives p = pRT'; the hydrostatic equation then gives

p=poexp(—2z/Hs) , p=poexp(—2z/Hs) , Hs=RT/g , po=pogH;
— the density decays exponentially with a scale height H;. We can just choose & =
HIn(pg/p) so that it’s the same as height. The associated density p. = p as before. When
we calculate the Brunt-Vaisala frequency, we get

m:i_QQ_g [1 Cv]_iﬁ

H, ¢ H, ¢p|  Hscp
and discover that it is constant. The vertical structure equation becomes
0*F 1 or 1 R
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Therefore F' will have exponential solutions

H; R
F =exp(az/Hy) a2—a+Ea:O , a=

1 1
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If we start with the case when the argument of the square root is positive, we must eliminate
the large root, since it has an energy density pu® ~ exp([2a—1]¢/Hy) which grows towards
infinity. Therefore we can only accept the negative sign, giving

RH,| ¢
F= 1— j1—4228
P ([ ¢, H, 2HS)

The lower boundary condition gives (for w = 0)

=0 = —0 F=1
o I, ,
or for the full condition
H,N?2 R H, R
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which will be well-behaved as long as ¢, > 2R (for the atmosphere ¢, ¢,, R =718, 1005,
287.1 J/kg/K° (Tsonis, An Introduction to Atmospheric Thermodynamics) so that this
condition is fine. The equivalent depth is 40% larger than the scale height. Over one scale
height, F' grows by a factor of exp(R/c,) = 1.33 while the kinetic energy density decreases
by exp(2cﬁ — 1) = 0.65. This is called the equivalent barotropic mode.

Are there any other modes? The derivation above makes it clear that this is the
only mode with H. > 4(R/c,)Hs; = 1.14H;. What about the modes with complex o
which have energies remaining order one at infinity? The lower boundary condition clearly
requires both the a4 and a_ modes; however, the latter will have downward energy flux.
To maintain such a mode, we require a reflecting surface or an energy source high in the
atmosphere. This will not happen for a resting atmosphere; therefore, the only mode
available is the equivalent barotropic mode.



Special cases of the pressure-like equations

Pressure coords

In the atmosphere, the standard choice is pressure coordinates & = p
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But the log form is also convenient especially if we work with a near-isothermal strat-
ification so that p = p. = poexp(—&/H)
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For both systems, the choice with £ corresponding to the resting atmosphere so that
pe = p gives a quasi-Boussinesq model
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For the ocean, we usually use (pg — p)/pog and ignore the difference between S and
N2, giving a Boussinesq form
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Summary table
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In this chart, pp and pg are reference values; the scale height is related to these two by
gH = RTy = Rby = po/po.
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