Orthogonal, Curvilinear Coordinates

Definition

We define a two sets of coordinates for each spatial point: (x, y, z), the normal Cartesion form, and $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$, a second reference system. The functions ξ_{i} are smooth functions of the x_{i} coordinates, $\xi_{i}=\xi_{i}(\mathbf{x})$. We define scale factors- the length corresponding to a small displacement $d \xi_{i}$ by

$$
h_{i}(\mathbf{x})=1 /\left|\nabla \xi_{i}\right|
$$

using the ordinary Cartesian form of the gradient. Note that the scale factors depend on position. We next define unit vectors corresponding to the displacements in each of the new coordinate directions by

$$
\begin{equation*}
\hat{\mathbf{e}}_{\mathbf{i}}^{\prime}=h_{i} \nabla \xi_{i} \tag{1}
\end{equation*}
$$

We will use the following summation convention: indices which appear at least twice on one side of an equation and do not appear on the other are summed over. Thus the i index is not summed in the previous expression.

The new coordinate system is orthogonal and right-handed if

$$
\begin{equation*}
\hat{\mathbf{e}}_{\mathbf{i}}^{\prime} \cdot \hat{\mathbf{e}}_{\mathbf{j}}^{\prime}=\delta_{i j} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathbf{e}}_{\mathbf{i}}^{\prime} \cdot \hat{\mathbf{e}}_{\mathbf{j}}^{\prime} \times \hat{\mathbf{e}}_{\mathbf{k}}^{\prime}=\epsilon_{i j k} \tag{3}
\end{equation*}
$$

Transformation of a Vector
If we have a vector given by its three components in Cartesian coordinates

$$
\mathbf{F}=F_{i} \hat{\mathbf{e}}_{\mathbf{i}}
$$

we can write the components in the new coordinates

$$
\mathbf{F}=F_{i}^{\prime} \hat{\mathbf{e}}_{\mathbf{i}}^{\prime}
$$

using the projection formula

$$
F_{i}^{\prime}=\hat{\mathbf{e}}_{\mathbf{i}}^{\prime} \cdot \mathbf{F}=\hat{\mathbf{e}}_{\mathbf{i}}^{\prime} \cdot \hat{\mathbf{e}}_{\mathbf{j}} F_{j}
$$

or

$$
\begin{equation*}
F_{i}^{\prime}=\gamma_{i j} F_{j} \tag{4}
\end{equation*}
$$

with

$$
\gamma_{i j}=\hat{\mathbf{e}}_{\mathbf{i}}^{\prime} \cdot \hat{\mathbf{e}}_{\mathbf{j}}=h_{i} \frac{\partial \xi_{i}}{\partial x_{j}}
$$

so that

$$
\hat{\mathbf{e}}_{\mathbf{i}}^{\prime}=\gamma_{i j} \hat{\mathbf{e}}_{\mathbf{j}}
$$

We can also transform backwards:

$$
F_{i}=F_{j}^{\prime} \gamma_{j i}
$$

This follows from the orthogonality condition

$$
\begin{align*}
\delta_{i j} & =\hat{\mathbf{e}}_{\mathbf{i}}^{\prime} \cdot \hat{\mathbf{e}}_{\mathbf{j}}^{\prime} \\
& =\gamma_{i k} \hat{\mathbf{e}}_{\mathbf{k}} \cdot \gamma_{j m} \hat{\mathbf{e}}_{\mathbf{m}} \tag{5}\\
& =\gamma_{i k} \gamma_{j m} \delta_{k m} \\
& =\gamma_{i k} \gamma_{j k}
\end{align*}
$$

We also have a triple product rule

$$
\begin{equation*}
\gamma_{i m} \gamma_{j n} \gamma_{k l} \epsilon_{m n l}=\epsilon_{i j k} \tag{6}
\end{equation*}
$$

The backwards transformation also implies that

$$
\gamma_{i j}=\frac{1}{h_{i}} \frac{\partial x_{j}}{\partial \xi_{i}}
$$

and

$$
\begin{equation*}
\gamma_{k i} \gamma_{k j}=\delta_{i j} \tag{5a}
\end{equation*}
$$

Gradient

We first show that the gradient transforms as a vector:

$$
\frac{\partial}{\partial x_{i}} \phi=\frac{\partial \xi_{j}}{\partial x_{i}} \frac{\partial}{\partial \xi_{j}} \phi
$$

by chain rule. Multiplying and dividing by h_{j} gives

$$
\begin{align*}
(\nabla \phi)_{i} & =h_{j} \frac{\partial \xi_{j}}{\partial x_{i}} \frac{1}{h_{j}} \frac{\partial}{\partial \xi_{j}} \phi \tag{7}\\
& =\gamma_{j i}\left(\nabla^{\prime} \phi\right)_{j}
\end{align*}
$$

where the ∇^{\prime} indicates the gradient in the new coordinate system with components

$$
\begin{equation*}
(\operatorname{grad} \phi)_{j}=\frac{1}{h_{j}} \frac{\partial}{\partial \xi_{j}} \phi \tag{8}
\end{equation*}
$$

Multiplying (7) by $\gamma_{k i}$ and using (5a), we find

$$
\left(\nabla^{\prime} \phi\right)_{k}=\gamma_{k i}(\nabla \phi)_{i}
$$

as in (4).

Divergence

Next we consider the transformation of the divergence,

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} F_{i} & =\frac{1}{h_{j}} h_{j} \frac{\partial \xi_{j}}{\partial x_{i}} \frac{\partial}{\partial \xi_{j}} \gamma_{m i} F_{m}^{\prime} \\
& =\frac{1}{h_{j}} \gamma_{j i} \gamma_{m i} \frac{\partial}{\partial \xi_{j}} F_{m}^{\prime}+\frac{F_{m}^{\prime}}{h_{j}} \gamma_{j i} \frac{\partial}{\partial \xi_{j}} \gamma_{m i} \\
& =\frac{1}{h_{j}} \frac{\partial}{\partial \xi_{j}} F_{j}^{\prime}+\frac{F_{m}^{\prime}}{h_{j}} \gamma_{j i} \frac{\partial}{\partial \xi_{j}} \frac{1}{h_{m}} \frac{\partial x_{i}}{\partial \xi_{m}}
\end{aligned}
$$

The second term expands to

$$
\begin{aligned}
& \frac{F_{m}^{\prime}}{h_{j}} \gamma_{j i} \frac{\partial x_{i}}{\partial \xi_{m}} \frac{\partial}{\partial \xi_{j}} \frac{1}{h_{m}}+\frac{F_{m}^{\prime}}{h_{j}^{2}} \frac{\partial x_{i}}{\partial \xi_{j}} \frac{1}{h_{m}} \frac{\partial}{\partial \xi_{j}} \frac{\partial x_{i}}{\partial \xi_{m}} \\
& \quad=F_{j}^{\prime} \frac{\partial}{\partial \xi_{j}} \frac{1}{h_{j}}+\frac{F_{m}^{\prime}}{2 h_{m} h_{j}^{2}} \frac{\partial}{\partial \xi_{m}} \frac{\partial x_{i}}{\partial \xi_{j}} \frac{\partial x_{i}}{\partial \xi_{j}}
\end{aligned}
$$

We then use the fact that

$$
\begin{aligned}
\sum_{i}\left(\frac{\partial x_{i}}{\partial \xi_{j}}\right)^{2} & =\sum_{i} h_{j} \gamma_{j i} h_{j} \gamma_{j i} \\
& =h_{j}^{2}
\end{aligned}
$$

to simplify the last term to

$$
\begin{gathered}
\frac{F_{m}^{\prime}}{2 h_{m} h_{j}^{2}} \frac{\partial}{\partial \xi_{m}} h_{j}^{2} \\
=F_{m}^{\prime} \frac{1}{h_{m}} \frac{\partial}{\partial \xi_{m}} \sum_{j} \frac{1}{2} \ln \left(h_{j}^{2}\right) \\
=F_{m}^{\prime} \frac{1}{h_{m} h_{1} h_{2} h_{3}} \frac{\partial}{\partial \xi_{m}}\left(h_{1} h_{2} h_{3}\right)
\end{gathered}
$$

Thus we find

$$
\begin{align*}
\nabla \cdot \mathbf{F} & =\frac{1}{h_{j}} \frac{\partial}{\partial \xi_{j}} F_{j}^{\prime}+F_{j}^{\prime} \frac{\partial}{\partial \xi_{j}} \frac{1}{h_{j}}+F_{j}^{\prime} \frac{1}{h_{1} h_{2} h_{3}} \frac{1}{h_{j}} \frac{\partial}{\partial \xi_{j}} h_{1} h_{2} h_{3} \\
\operatorname{div} \mathbf{F} & =\frac{1}{h_{1} h_{2} h_{3}} \frac{\partial}{\partial \xi_{j}}\left(\frac{h_{1} h_{2} h_{3}}{h_{j}} F_{j}^{\prime}\right) \tag{9}
\end{align*}
$$

Curl

Next we consider the curl and show that it transforms as a proper vector; i.e., if

$$
C_{m} \equiv \epsilon_{m j k} \frac{\partial}{\partial x_{j}} F_{k}
$$

then

$$
\gamma_{i m} \epsilon_{m j k} \frac{\partial}{\partial x_{j}} F_{k}
$$

should be the $i^{\text {th }}$ component of the curl,

$$
\begin{equation*}
(\operatorname{curl} \mathbf{F})_{i}=C_{i}^{\prime} \equiv \epsilon_{i j k} \frac{1}{h_{j} h_{k}} \frac{\partial}{\partial \xi_{j}}\left(h_{k} F_{k}^{\prime}\right) \tag{10}
\end{equation*}
$$

We substitute

$$
F_{k}^{\prime}=\gamma_{k m} F_{m}=\frac{1}{h_{k}} \frac{\partial x_{m}}{\partial \xi_{k}} F_{m}
$$

into the last expression to find

$$
C_{i}^{\prime}=\epsilon_{i j k} \frac{1}{h_{j} h_{k}}\left(\frac{\partial x_{m}}{\partial \xi_{k}} \frac{\partial}{\partial \xi_{j}} F_{m}+F_{m} \frac{\partial^{2} x_{m}}{\partial \xi_{j} \partial \xi_{k}}\right)
$$

The last term gives zero contribution because it is symmetric in i and j while the $\epsilon_{i j k}$ is antisymmetric. Therefore

$$
\begin{aligned}
C_{i}^{\prime} & =\epsilon_{i j k} \frac{1}{h_{j} h_{k}} \frac{\partial x_{m}}{\partial \xi_{k}} \frac{\partial}{\partial \xi_{j}} F_{m} \\
& =\epsilon_{i j k} \frac{1}{h_{j} h_{k}} \frac{\partial x_{m}}{\partial \xi_{k}} \frac{\partial x_{n}}{\partial \xi_{j}} \frac{\partial}{\partial x_{n}} F_{m} \\
& =\epsilon_{i j k} \gamma_{k m} \gamma_{j n} \frac{\partial}{\partial x_{n}} F_{m}
\end{aligned}
$$

We thus are asking whether

$$
\epsilon_{i j k} \gamma_{k m} \gamma_{j n} \frac{\partial}{\partial x_{n}} F_{m}=\gamma_{i m} \epsilon_{m j k} \frac{\partial}{\partial x_{j}} F_{k}
$$

If we multiply both sides of this by $\gamma_{i s}$ and sum, we have

$$
\epsilon_{i j k} \gamma_{i s} \gamma_{j n} \gamma_{k m} \frac{\partial}{\partial x_{n}} F_{m}=\gamma_{i s} \gamma_{i m} \epsilon_{m j k} \frac{\partial}{\partial x_{j}} F_{k}
$$

Using (6) and (5), we find that both sides are equal to

$$
\epsilon_{s n m} \frac{\partial}{\partial x_{n}} F_{m}
$$

So that the curl (10) indeed transforms properly.

Advective terms

Here we comment that the proper form of the advective terms is found by regarding

$$
u_{j} \frac{\partial}{\partial x_{j}} u_{i}
$$

as a shorthand for

$$
\operatorname{grad}\left(\frac{\mathbf{u} \cdot \mathbf{u}}{2}\right)-\mathbf{u} \times \operatorname{curl} \mathbf{u}
$$

with the gradient and curl operations defined by (8) and (10) respectively. We cannot regard the ∇ as an ordinary vector; i.e.

$$
\left(\nabla^{\prime}\right)_{i} \neq \frac{1}{h_{i}} \frac{\partial}{\partial \xi_{i}}
$$

The forms (8), (9), and (11) of the gradient, divergence, and curl are clearly inconsistent with such a definition. Thus the operator

$$
\mathbf{u} \cdot \nabla
$$

does not, in itself, make sense. Rather we must define its forms specifically depending on the operand:

$$
\mathbf{u} \cdot \nabla \phi=\mathbf{u} \cdot(\operatorname{grad} \phi)
$$

and

$$
\mathbf{u} \cdot \nabla \mathbf{u}=\operatorname{grad}\left(\frac{\mathbf{u} \cdot \mathbf{u}}{2}\right)-\mathbf{u} \times \operatorname{curl} \mathbf{u}
$$

For advection of a different vector field, we have
$\mathbf{u} \cdot \nabla \mathbf{B}=\operatorname{grad}\left(\frac{\mathbf{u} \cdot \mathbf{B}}{2}\right)+\frac{1}{2} \mathbf{u} \operatorname{div} \mathbf{B}-\frac{1}{2} \mathbf{B} \operatorname{div} \mathbf{u}-\frac{1}{2} \mathbf{u} \times \operatorname{curl} \mathbf{B}-\frac{1}{2} \mathbf{B} \times \operatorname{curl} \mathbf{u}-\frac{1}{2} \operatorname{curl}(\mathbf{u} \times \mathbf{B})$
(see Morse and Feshbach).
In terms of the scale factors, we find

$$
\mathbf{u} \cdot(\operatorname{grad} \phi)=u_{i} \frac{1}{h_{i}} \frac{\partial}{\partial \xi_{i}} \phi
$$

ant the $i^{\text {th }}$ component of

$$
\mathbf{u} \cdot \nabla \mathbf{u}=\frac{u_{m}}{h_{i} h_{m}} \frac{\partial}{\partial \xi_{m}} h_{i} u_{i}-\frac{u_{m} u_{m}}{h_{i} h_{m}} \frac{\partial}{\partial \xi_{i}} h_{m}=\frac{u_{m}}{h_{m}} \frac{\partial}{\partial \xi_{m}} u_{i}+\frac{u_{m} u_{i}}{h_{i} h_{m}} \frac{\partial}{\partial \xi_{m}} h_{i}-\frac{u_{m} u_{m}}{h_{i} h_{m}} \frac{\partial}{\partial \xi_{i}} h_{m}
$$

as part of which we can see a term which looks like the dot product of \mathbf{u} with the gradient operator and two terms which depend on the curvature of the coordinate system.

