Div, Grad, Curl

Gradient

The components of the gradient are found by using the fact that the change in a scalar quantity for a small displacement is given by the dot product of the displacement vector and the gradient.

$$
d \phi=d \mathbf{s} \cdot \operatorname{grad}(\phi)
$$

If we write the displacement in terms of the changes in coordinate values times the scale factors

$$
d \mathbf{s}=h_{i} d \xi_{i} \hat{\mathbf{e}}_{i}^{\prime}
$$

we find

$$
\begin{aligned}
d \phi & =h_{i} d \xi_{i}\left[\hat{\mathbf{e}}_{i}^{\prime} \cdot \operatorname{grad}(\phi)\right] \\
& =h_{i} d \xi_{i}(\operatorname{grad} \phi)_{i}^{\prime}
\end{aligned}
$$

So that the $i^{\text {th }}$ component of the gradient is

$$
(\operatorname{grad} \phi)_{i}^{\prime}=\frac{1}{h_{i}} \frac{\partial}{\partial \xi_{i}} \phi
$$

Divergence

We consider a small volume centered at point $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ with sides $\left(d \xi_{1}, d \xi_{2}, d \xi_{3}\right)$. The divergence theorem (Gauss' theorem) gives

$$
\begin{gathered}
\iiint h_{1} d \xi_{1} h_{2} d \xi_{2} h_{3} d \xi_{3} d i v \mathbf{F}= \\
\left.\iint\left(h_{2} h_{3} F_{1}^{\prime}\right)\right|_{\xi_{1}+d \xi_{1} / 2} d \xi_{2} d \xi_{3}-\left.\iint\left(h_{2} h_{3} F_{1}^{\prime}\right)\right|_{\xi_{1}-d \xi_{1} / 2} d \xi_{2} d \xi_{3}+\ldots
\end{gathered}
$$

For a small volume, we can Taylor expand the right hand side and drop the integrals giving

$$
h_{1} d \xi_{1} h_{2} d \xi_{2} h_{3} d \xi_{3} d i v \mathbf{F}=\frac{\partial}{\partial \xi_{1}}\left(h_{2} h_{3} F_{1}^{\prime}\right) d \xi_{1} d \xi_{2} d \xi_{3}+\ldots
$$

so that

$$
\operatorname{div} \mathbf{F}=\frac{1}{h_{1} h_{2} h_{3}} \frac{\partial}{\partial \xi_{1}}\left(h_{2} h_{3} F_{1}^{\prime}\right)+\ldots
$$

We can combine all three terms to give

$$
\operatorname{div} \mathbf{F}=\frac{1}{h_{1} h_{2} h_{3}} \frac{\partial}{\partial \xi_{i}}\left(\frac{h_{1} h_{2} h_{3}}{h_{i}} F_{i}^{\prime}\right)
$$

Curl

The curl is found by using Stokes' theorem. If we consider a small area centered at $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ with sides $d \xi_{1}, d \xi_{2}$ and a normal $\hat{\mathbf{e}}_{3}^{\prime}$ we have

$$
\begin{gathered}
(\operatorname{curl} \mathbf{F})_{3}^{\prime} h_{1} d \xi_{1} h_{2} d \xi_{2}= \\
\left.\left(F_{1} h_{1}\right)\right|_{\xi_{2}-d \xi_{2} / 2} d \xi_{1}+\left.\left(F_{2} h_{2}\right)\right|_{\xi_{1}+d \xi_{1} / 2} d \xi_{2}-\left.\left(F_{1} h_{1}\right)\right|_{\xi_{2}+d \xi_{2} / 2} d \xi_{1}-\left.\left(F_{2} h_{2}\right)\right|_{\xi_{1}-d \xi_{1} / 2} d \xi_{2}
\end{gathered}
$$

Taylor expanding gives

$$
(\operatorname{curl} \mathbf{F})_{3}^{\prime} h_{1} d \xi_{1} h_{2} d \xi_{2}=-\frac{\partial}{\partial \xi_{2}}\left(F_{1} h_{1}\right) d \xi_{1} d \xi_{2}+\frac{\partial}{\partial \xi_{1}}\left(F_{2} h_{2}\right) d \xi_{1} d \xi_{2}
$$

or

$$
(\operatorname{curl} \mathbf{F})_{3}^{\prime}=\frac{1}{h_{1} h_{2}}\left[-\frac{\partial}{\partial \xi_{2}}\left(F_{1} h_{1}\right)+\frac{\partial}{\partial \xi_{1}}\left(F_{2} h_{2}\right)\right]
$$

In general terms, then

$$
(\operatorname{curl} \mathbf{F})_{i}=\epsilon_{i j k} \frac{1}{h_{j} h_{k}} \frac{\partial}{\partial \xi_{j}}\left(h_{k} F_{k}^{\prime}\right)
$$

