
Example of Curvilinear Coordinates – Earth coords.

We consider the case of earth coordinates: longitude (λ), latitude (θ) , and height (z).
We can define these by

X = (a+ z) cos θ sinλ

Y = (a+ z) cos θ cosλ

Z = (a+ z) sin θ

where a is the radius of the planet. (One could work with ellipsoids to represent the
flattened shape, but it is rarely worth the effort.) The scale factors are

h1 = (a+ z) cos θ

h2 = (a+ z)

h3 = 1

From these relationships, we find the gradient

(grad φ)i =
1

hi

∂

∂ξi
φ =



1

(a+ z) cos θ

∂

∂λ
φ

1

(a+ z)

∂

∂θ
φ

∂

∂z
φ


The divergence can be written as

(div F)i =
1

h1h2h3

∂

∂ξj

(
h1h2h3
hj

Fj

)
=

1

(a+ z) cos θ

∂

∂λ
Fλ +

1

(a+ z) cos θ

∂

∂θ
(cos θFθ) +

1

(a+ z)2
∂

∂z
([a+ z]2Fz)

The curl can be found from

(curl F)i = εijk
1

hjhk

∂

∂ξj
(hkFk) = εijk

hi
h1h2h3

∂

∂ξj
(hkFk)

=



1

(a+ z)

∂

∂θ
Fz −

1

(a+ z)

∂

∂z
[(a+ z)Fθ]

1

(a+ z)

∂

∂z
[(a+ z)Fλ]− 1

(a+ z) cos θ

∂

∂λ
Fz

1

(a+ z) cos θ

∂

∂λ
Fθ −

1

(a+ z) cos θ

∂

∂θ
[cos θFλ]


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Euler eqns

From
∂

∂t
u + (ζ + 2Ω)× u +

1

2
∇|u|2 = −1

ρ
∇p−∇Φ

we can write out the three momentum equations. The absolute vorticity is

ζ+2Ω =

(
1

r
wθ −

1

r
(rv)z ,

1

r
(ru)z −

1

r cos θ
wλ + 2Ω cos θ ,

1

r cos θ
vλ −

1

r cos θ
(cos θu)θ + 2Ω sin θ

)
(r = a+ z) and find

D

Dt
u− 2Ω sin θv +

uw − uv tan θ

r
+ 2Ω cos θw = − 1

ρr cos θ

∂

∂λ
p

D

Dt
v + 2Ω sin θu+

wv + u2 tan θ

r
= − 1

ρr

∂

∂θ
p

D

Dt
w − 2Ω cos θu− u2 + v2

r
= −1

ρ

∂

∂z
p− g

with D
Dt the scalar form of the operator

D

Dt
=

∂

∂t
+

u

r cos θ

∂

∂λ
+
v

r

∂

∂θ
+ w

∂

∂z

The mass equation

∂

∂t
ρ+

1

r cos θ

∂

∂λ
(ρu) +

1

r cos θ

∂

∂θ
(ρ cos θv) +

1

r2
∂

∂z
(ρr2w) = 0

the thermodynamic equation
D

Dt
ρ− 1

c2s

D

Dt
p = 0

and the equation of state
c2s = c2s(ρ, p)

complete the system. Yes, we usually think of thermodynamics as giving an equation
for T and the equation of state as ρ(T, p) (adding salinity in the ocean); slightly more
sophisticated versions express the density in terms of potential temperature Θ instead,
because that is conserved in adiabatic motion. But you can always invert the relationships
(though the 4o freshwater maximum could be an issue; see comment below however).

For an ideal gas, the speed of sound is c2s = γp/ρ (γ = cp/cv), while for the ocean it is
large, so that the only significant contribution from the second term in the thermodynamic
equation is from the hydrostatic pressure associated with the stratification. It brings in
the −g2/c2s term in the Brunt-Vaisala frequency.
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Laplacians

The scalar Laplacian is

∇2φ =
1

r2 cos2 θ

∂2

∂λ2
φ+

1

r2
∂2

∂θ2
φ− sin θ

r2 cos θ

∂

∂θ
φ+

∂2

∂r2
φ+

2

r

∂

∂r
φ

The vector Laplacian acting on an eastward velocity is

∇2uêλ =


1

r2 cos2 θ
∂2

∂λ2u+ 1
r2

∂2

∂θ2u−
sin θ
r2 cos θ

∂
∂θu−

u sin2 θ
r2 cos2 θ + ∂2

∂r2u−
u
r2 + 2

r
∂
∂ru

2 sin θ
r2 cos2 θ

∂
∂λu

− 2
r2 cos θ

∂
∂λu


and the difference in the eastward component becomes

êλ · ∇2(uêλ)−∇2u = − u sin2 θ

r2 cos2 θ
− u

r2

not to mention the vector Laplacian having terms in the other two components. Some of
these go away for a nondivergent flow:

∇2u =


∇2u+ 2

r2 cos θ
∂w
∂λ −

2 sin θ
r2 cos θ

∂v
∂λ −

sin2 θ u
r2 cos2 θ −

u
r2

∇2v + 2
r2
∂w
∂θ −

sin2 θ v
r2 cos2 θ −

v
r2 + 2 sin θ

r2 cos2 θ
∂u
∂λ

∇2w + 2
r
∂w
∂r + 2w

r2


but we still cannot express the zonal component of the Laplacian of the flow as an operator
just on u.

For u = −curl(ψ(λ, θ)êz), the vorticity is just êz∇2ψ.
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