
Green’s functions [1D]
The general second order problem

a(x)
∂2

∂x2
F (x) + b(x)

∂

∂x
F (x) + c(x)F (x) = S(x) (1)

with (for convenience) Dirichlet boundary conditions: 0 at the left and right (which could
be at infinity) has the solution

F (x) =

∫

dx′G(x, x′)S(x′)

where the Green’s function satisfies

a(x)
∂2

∂x2
G(x, x′) + b(x)

∂

∂x
G(x, x′) + c(x)G(x, x′) = δ(x− x′) (2)

The functions a, b, and c are assumed to be smooth with a 6= 0.
Matching the order of singularities indicates that ∂

∂x
G could have a step at x = x′,

so that G itself may have a slope discontinuity but must be continuous. Integrating from
x′ − ǫ/2 to x′ + ǫ/2 – across the discontinuity in ∂

∂x
G gives

a(x′) [Gx(x
′ + ǫ/2, x′)−Gx(x

′ − ǫ/2, x′)] + b(x′) [G(x′ + ǫ/2, x′)−G(x′ − ǫ/2, x′)]

+ǫc(x′)G(x′, x′) +HOT = 1

Collecting just the order one terms gives

a(x′)[Gx(x
′ + ǫ/2, x′)−Gx(x

′ − ǫ/2, x′)] = 1 (3)

using the continuity of G and finiteness of Gx to show that the b term is also order ǫ.
Now let’s find G in terms of the free solutions to

a(x)
∂2

∂x2
f(x) + b(x)

∂

∂x
f(x) + c(x)f(x) = 0 (4)

We can pick the two solutions fL(x) which goes to 0 at the left and fR(x) which goes to
zero at the right. Then

G(x, x′) = AfL(x<)fR(x>)

where x< = min(x, x′) and x> = max(x, x′). This satisfies the equation away from x = x′

since each f does; it also satisfies the boundary conditions; and it’s continuous at x = x′

where x< = x>. The matching condition (2) is just

a(x′)A

[

fL(x
′)

∂

∂x
fR(x

′)− fR(x
′)

∂

∂x
fL(x

′)

]

= 1

1



or

A =
1

a(x′)W (fL, fR)
(4)

with W the Wronskian defined as in the square bracket above.
We can find the Wronskian: if we use equation (4) for fR and multiply by fL and

then subtract the product of fR with the equation written for fL, we have

a

[

fL
∂2

∂x2
fR − fR

∂2

∂x2
fL

]

+ b

[

fL
∂

∂x
fR − fR

∂

∂x
fL

]

= 0

or, if we pull one derivative out from the first bracket (noting that the estra terms cancel),

a
∂

∂x
W + bW = 0

which implies

W (x) = C exp

(

−

∫ x

dz
b(z)

a(z)

)

(hence requiring a 6= 0); we can evaluate it at a single point to find C.
For the case at hand, a = 1, b = 0 and c = −k2, so that W is just constant. Since

fL = exp(kx), fR = exp(−kx), we find W = −2k. Thus

G(x, x′) = −
1

2k
exp(kx< − kx>)

For x < x′, x< − x> = x− x′; for x > x′, x< − x> = x′ − x; both of these are negative, so
that x< − x> = −|x− x′| and

G(x, x′) = −
1

2k
exp(−k|x− x′|)

For a more complex example, suppose we think of the polar problem a = 1, b = 1/r,
c = −m2/r2 − k2. The solutions are modified Bessel functions

fL = Im(kr) , fR = Km(kr)

and W = C/r. Using the expressions near the origin for Im ∼ (r/2)m/Γ(m + 1) and
Km ∼ 1

2
Γ(m)(r/2)−m leads to W = −1/r and

G(r, r′) = −
1

r′
Im(r<)Km(r>)
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