Green’s functions [1D]

The general second order problem

a(m)%F(m) + b(a:)gF(a:) + c(x)F(z) = S(x) (1)

with (for convenience) Dirichlet boundary conditions: 0 at the left and right (which could
be at infinity) has the solution

F(z) = /dx’G(a:,a:’)S(a:’)

where the Green’s function satisfies

2

a(az)%G(az,x') + b(x)%G(az,x') + c(2)G(z,2') = §(x — ') (2)

The functions a, b, and ¢ are assumed to be smooth with a # 0.

Matching the order of singularities indicates that %G could have a step at z = 2/,
so that G itself may have a slope discontinuity but must be continuous. Integrating from
' —€/2 to x' 4+ €/2 — across the discontinuity in a%G gives

a(r') [Go(2' +¢€/2,2") — Go(2' —€/2,2")] + b(2') [G(2' +€/2,2") — G(x' — €/2,2")]

+ec(r')G(2',2') + HOT =1

Collecting just the order one terms gives
a(x)[Ge(z' +€/2,2") — Gp(z' —€/2,2")] =1 (3)

using the continuity of G and finiteness of G, to show that the b term is also order e.
Now let’s find G in terms of the free solutions to
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52 (@) +0(@) 5 (@) + e()f () = 0 (4)

a(z)

We can pick the two solutions fr(x) which goes to 0 at the left and fr(x) which goes to
zero at the right. Then

G(z,2") = Afp(zo) fr(zs)

where x. = min(x,z’) and x~ = maz(x,z’). This satisfies the equation away from =z = 2’
since each f does; it also satisfies the boundary conditions; and it’s continuous at z = z’
where . = z~. The matching condition (2) is just
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or
1

A= 4
a@W (Fo Fr) W
with W the Wronskian defined as in the square bracket above.
We can find the Wronskian: if we use equation (4) for fr and multiply by fr and
then subtract the product of fr with the equation written for f;, we have
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or, if we pull one derivative out from the first bracket (noting that the estra terms cancel),

aQW—i—bW: 0
oz

W<x>:ceXp(_/xdz%)

(hence requiring a # 0); we can evaluate it at a single point to find C.
For the case at hand, @ = 1, b = 0 and ¢ = —k?, so that W is just constant. Since
fr = exp(kx), fr = exp(—kx), we find W = —2k. Thus

which implies

1
G(z,2") = —5% exp(kr< — ko)

Forx < a2, 2. —x~ =2 —2a'; for x > 2/, v —x~ = 2’ — ; both of these are negative, so
that - — x~ = —|z — /| and

G(z,2') = —% exp(—k|z — 2'|)

For a more complex example, suppose we think of the polar problem a =1, b = 1/r,
c = —m?/r? — k2. The solutions are modified Bessel functions

fL :Im(kr) ) fR:Km<kT)

and W = C/r. Using the expressions near the origin for I,, ~ (r/2)"/T'(m + 1) and
Ky, ~ AT(m)(r/2)~™ leads to W = —1/r and

G(Tv T/) = _%Im(r<>Km(T>>



