Laplace Tidal Equations - horizontal structure

Equations

After separation of variables of the original linearized, hydrostatic, pressure coordinate equations (with the "standard approximation" of neglecting the horizontal part of the rotation) are

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathbf{u}+\mathbf{f} \times \mathbf{u} & =-\operatorname{grad} \Phi \\
\frac{\partial}{\partial t} \Phi+g H_{e q} \text { div } \mathbf{u} & =0
\end{aligned}
$$

Here \mathbf{f} is $f(\varphi) \hat{\mathbf{r}}$. The vertical structure of the horizontal velocities satisfies the equation

$$
\frac{\partial}{\partial p} \frac{1}{S} \frac{\partial}{\partial p} F=-\frac{1}{g H_{e q}} F
$$

with $S=-\Pi \bar{\theta}_{p}$. The solution to this, with suitable boundary conditions, defines the equivalent depths $H_{e q}$.

Solution of the horizontal eqns.

If we take $\mathbf{f} \times$ the momentum equations and subtract it from $\partial / \partial t$ of the same equations, we find

$$
\frac{\partial^{2}}{\partial t^{2}} \mathbf{u}+f^{2} \mathbf{u}=-\operatorname{grad} \frac{\partial}{\partial t} \Phi+\mathbf{f} \times \operatorname{grad} \Phi
$$

For motions with frequency ω, the velocity is given by

$$
\mathbf{u}=-\frac{1}{f^{2}-\omega^{2}} \operatorname{grad} \frac{\partial}{\partial t} \Phi+\frac{\mathbf{f}}{f^{2}-\omega^{2}} \times \operatorname{grad} \Phi
$$

Taking the divergence and substituting in the mass equation yields

$$
\frac{\partial}{\partial t} \Phi-g H_{e q} \operatorname{div} \frac{1}{f^{2}-\omega^{2}} \operatorname{grad} \frac{\partial}{\partial t} \Phi+g H_{e q} \operatorname{div}\left[\frac{\mathbf{f}}{f^{2}-\omega^{2}} \times \operatorname{grad} \Phi\right]=0
$$

Using the vector identity

$$
\operatorname{curl} \Phi \mathbf{v}=\operatorname{grad} \Phi \times \mathbf{v}+\Phi c u r l \mathbf{v}
$$

gives

$$
\frac{\partial}{\partial t} \Phi-g H_{e q} \operatorname{div} \frac{1}{f^{2}-\omega^{2}} \operatorname{grad} \frac{\partial}{\partial t} \Phi+g H_{e q} \operatorname{div}\left[\Phi \operatorname{curl} \frac{\mathbf{f}}{f^{2}-\omega^{2}}\right]=0
$$

For the spherical case, with $f=2 \Omega \sin \varphi$, the last term simplifies to

$$
g H_{e q} \frac{1}{a \cos \varphi} \frac{\partial}{\partial \lambda}\left[\Phi \frac{1}{a} \frac{\partial}{\partial \varphi} \frac{f}{f^{2}-\omega^{2}}\right]
$$

If we put in $\Phi \sim \exp (\imath m \lambda-\imath \omega t)$, we end up with a single equation for the meridional structure, with the frequency acting somewhat like the eigenvalue.

Small scale, high frequency
If we consider small scale waves in the sense that $\operatorname{grad} \Phi / \Phi \gg \operatorname{grad} f / f$, we can drop the last term and pull the $f^{2}-\omega^{2}$ out to find

$$
\left[1-\frac{g H_{e q}}{f^{2}-\omega^{2}} \nabla^{2}\right] \Phi_{t}=0
$$

which has a zero frequency mode and a mode with

$$
\omega^{2}=f^{2}+g H_{e q} \mathbf{k}^{2}
$$

where the wavenumber is defined by the solutions of $\nabla^{2} \Phi=-\mathbf{k}^{2} \Phi$ as in the barotropic problem. These are the gravity waves.

Low frequency
The other mode has a low frequency (at least in the small scale limit) and satisfies

$$
\frac{\partial}{\partial t} \Phi-g H_{e q} \operatorname{div} \frac{1}{f^{2}} \operatorname{grad} \frac{\partial}{\partial t} \Phi-g H_{e q} \frac{1}{a \cos \varphi} \frac{\beta}{f^{2}} \frac{\partial}{\partial \lambda} \Phi=0
$$

(at least away from the equator). In the case where the scales are still small, we can approximate this by

$$
\frac{\partial}{\partial t}\left[\nabla^{2}-\frac{f^{2}}{g H_{e q}}\right] \Phi+\beta \frac{1}{a \cos \varphi} \frac{\partial}{\partial \lambda} \Phi=0
$$

a form of the Rossby wave equation. The local phase speed $c=a \cos \varphi(\omega / m)$ is given by

$$
c=-\frac{\beta}{\mathbf{k}^{2}+f^{2} / g H_{e q}}
$$

