
Laplace Tidal Equations — Vertical Structure

The vertical structure is given by the solution of
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Low frequency

When ω is small, the VSE simplifies to
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In the case where N2H << g, the boundary conditions become Fz = 0 at both types of
surfaces. This equation clearly has a barotropic solution F = 1 with infinite equivalent
depth. If we don’t drop the N2/g term, we can estimate Heq by using F ≃ 1 + f and
integrating from a rigid bottom at z = 0 to a free surface at z = H. We find
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combining this with the horizontal equations gives us the dispersion relationship for long
surface gravity waves
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In addition, we have a set of internal modes. If we use a WKB approximation so that
F ≃ exp(ımz), we have
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Intermediate frequencies

When the frequency is comparable to N or f and N2H << g, N2H2 << cs
2 we have
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for the internal modes, leading to the full internal wave relationship
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High frequencies

When the frequencies are large, the vertical scales will be short and the VSE simplifies
to

∂2

∂z2
F +

ω2

cs
2
F =

ω2

gHeq

F

with
∂

∂z
F = 0 (FixedB)

and/or

(
∂

∂z
− ω2

g
)F = 0 (FreeB)

For the internal modes,
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and the high–frequency horizontal equation gives
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—sound waves.
The external mode has F ∼ exp(mz) with m = ω2/g from the free surface boundary

condition. The equivalent depth is
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Since these waves are still slow compared to the sound speed, this simplifies to
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and the horizontal equation gives
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the dispersion relationship for short gravity waves.
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