12.803 - Pset 3

1. Problem

a) Derive the two-layer model

$$
\begin{aligned}
\frac{\partial}{\partial t} q_{1}+J\left(\psi_{1}, q_{1}\right) & =0 \\
\frac{\partial}{\partial t} q_{2}+J\left(\psi_{2}, q_{2}\right) & =0
\end{aligned}
$$

with

$$
q_{1}=\nabla^{2} \psi_{1}+F_{1}\left(\psi_{2}-\psi_{1}\right)+\beta y \quad, \quad q_{2}=\nabla^{2} \psi_{2}+F_{2}\left(\psi_{1}-\psi_{2}\right)+\beta y
$$

by starting with the QG voricity and buoyancy equations

$$
\frac{D}{D t}(\zeta+\beta y)=f_{0} \frac{\partial}{\partial z} w \quad, \quad \frac{D}{D t} b+N^{2} w=0
$$

with

$$
\zeta=\nabla^{2} \psi \quad, \quad b=f_{0} \frac{\partial}{\partial z} \psi \quad, \quad \frac{D}{D t}=\frac{\partial}{\partial t}+\psi_{x} \frac{\partial}{\partial y}-\psi_{y} \frac{\partial}{\partial x}
$$

Show that these give the ordinary Boussinesq QG eqns when you eliminate w.
b) Take N^{2} as a delta function $N^{2}=g^{\prime} \delta\left(z-H_{2}\right)$ where $z=0$ is the bottom, the interface between the two layers is centered at $z=H_{2}$ and $H_{1}+H_{2}$ is the total depth. For the buoyancy eqn to be well-behaved, you need

$$
\psi=\psi_{2}+\left(\psi_{1}-\psi_{2}\right) *\left(z>H_{2}\right)
$$

so that b has a delta-function which can cancel the one in the vertical advection of the background stratification.
c) From this, $\frac{\partial}{\partial z} w$ is constant in each layer and therefore is just $\pm w\left(x, y, H_{2}, t\right)$ divided by the relevant layer depth.
d) Use this in the two vorticity equations, one for $\nabla^{2} \psi_{1}$ and one for $\nabla^{2} \psi_{2}$ to get the two-layer equations.
e) (Finally - to the problem) Let $q_{j}=\bar{Q}_{j_{y}} y+q_{j}^{\prime} \exp (\imath k x-k c t)$ and $\psi_{j}=-U_{j} y+$ $\psi_{j}^{\prime} \exp (\imath k x-k c t)$. Write the matrix equation relating q_{j}^{\prime} to ψ_{j}^{\prime} and construct the eigenvalue equation for c and the eigenvector \mathbf{q}^{\prime}

$$
\mathbf{M q} \mathbf{q}^{\prime}=c \mathbf{q}^{\prime}
$$

Note the similarity to the Eady problem.
From the properties of \mathbf{M} show that instability requires the two \bar{Q}_{y} constants to be opposite sign. Show that this is sufficient for instability.

2. Derivations

2a) Nondimensionalize the β-plane SW equations

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathbf{u}+(f+\zeta) \hat{\mathbf{z}} \times \mathbf{u} & =-\nabla\left(g h^{\prime}+\frac{1}{2}|\mathbf{u}|^{2}\right) \\
\frac{\partial}{\partial t} h+\nabla \cdot\left(H \mathbf{u}+h^{\prime} \mathbf{u}\right) & =0
\end{aligned}
$$

using a velocity scale U, length scale L, advective time scale, geostrophic estimate of h^{\prime}.
2b) Write the nondimensional vorticity, divergence, and PV equations (both for q and for $Q=H q-f_{0}$ from these.
2c) Write the lowest order in Rossby number for all these, assuming $\beta L / f_{0} \sim \epsilon$ and $L \sim R_{d}$. Show that the lowest order has $\psi_{0}=h_{0}^{\prime}$ and $\varphi_{0}=0$. Show that the lowest order Q_{0} equation is just the QG equation.
2d) Write the first order momentum, mass eqns. Solve for \mathbf{u}_{1} and compute its divergence. Use geostrophy to get an evolution equation for the lowest order PV, all expressed in terms of h_{0}^{\prime} or ψ_{0}.
2e) Write the first order divergence equation using $D_{0}=0$ as you've shown. The equation for h_{1}^{\prime} in terms of ψ_{0} should look familiar.

3. Numerical experiments

Using the SW code and inversion codes, examine the behavior of a dipolar initial condition

$$
Q=\epsilon x \exp \left(-\left[x^{2}+y^{2}\right] / 2\right)
$$

Try and monitor gravity wave energy by looking at a few points away from the vortex. Consider
3a) unbalanced initial conditions $\left[h^{\prime}=-Q / \gamma^{2}(1+Q), \psi=0\right]$
3b) geostrophically balanced $\left[h^{\prime}=\psi\right.$]
3c) nonlinear balance
What happens for small and medium Rossby numbers (less than one, though)?

