
12.843 — Baroclinic Inversion/ Instability
— Numerical Experiments

We’re going to look at the 2 layer model and baroclinic instability including nonlin-
earity. The model solves(
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with
q1 = ∇2ψ1 + F1(ψ2 − ψ1) , q2 = ∇2ψ2 + F2(ψ1 − ψ2)

and
Q1y = β + F1U , Q2y = β − F2U

The domain will be a channel of width W and length 2W . We nondimensionalize the
equations using W for lengths and W/U for times and assume that the layer depths are
equal H1 = H2 = 1

2H. Then the equations look like the above except that U will be 1 (or
zero in the absence of mean flow) and the parameters are
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There are two versions: a doubly period model and a periodic channel with NS walls
(above). The doubly-periodic model has r = 0 and a filter to absorb fine-scale PV filaments
that could otherwise cause numerical problems. The PV inversion is explicit in the doubly-
periodic code; you’ll want to contrast the nonlinear behavior in each one.

For the inversion, you specify the parameters F1 and F2; the evolution depends on U ,
and β as well.

Given the fields for q1 and q2 as functions of x and y, the program will calculate ψ
and contour both the PV anomalies qi and the full PV fields qi + [β + Fi(Ui − U3−i)]y. It
will also show the streamfunction anomalies ψi and the full streamfunction ψi − Uiy.

Once you have specified the PV and/or streamfunction fields, use the QG model to
see how the flow evolves.
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Derivations:

• Derive these equations as follows:
- Start with the QG vorticity and buoyancy eqns
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- show that these give the ordinary Boussinesq QG eqns when you eliminate w.
- Think of N2 as a delta function N2 = g′δ(z − H2) where z = 0 is the bottom,

the interface between the two layers is centered at z = H2 and H1 + H2 is the
total depth. For the buoyancy eqn to be well-behaved, you need

ψ = ψ2 + (ψ1 − ψ2) ∗ (z > H2)

so that b has a delta-function which can cancel the one in the vertical advection
of the background stratification.

- Use this to rewrite the buoyancy eqn as

D
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(ψ1 − ψ2) +

g′
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w = 0

Show that it doesn’t matter which ψj you use in the D
Dt .

- From this, ∂
∂zw is constant in each layer and therefore is just ±w(x, y,H2, t)

divided by the relevant layer depth.
- Use this in the two vorticity equations, one for ∇2ψ1 and one for ∇2ψ2 to get the

two-layer equations (but for the total flow, not just the fluctuating part – i.e., the
Ui terms will not appear).

• Suppose q1 = exp(ıkx) and q1 = 0. Find ψ1 and ψ2. Comment on this and the
opposite problem in terms of how the inversion looks.

• With the basic state U , show that the PV gradients can have opposite signs when
there’s enough shear. How does this depend on eastward vs. westward shear? Argue
(qualitatively) that the physics of the instability, expressed in terms of inversion of PV
anomalies and wave propagation/advection, is essentially similar to the Eady model.
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Numerical experiments

· Explore the instability criterion using the numerics. How much shear do you need?
Is the necessary condition sufficient? Show that you also need

k2 + `2 < F1 + F2

The channel code shows the case with ` = π – the sin(`y) mode which fits in the channel
– and marks the k values which also fit (nπ).
· Show numerically that stable waves can still amplify, at least temporarily, if the

initial phase relationships between upper and lower layers are correct.
· A growing plane wave is an exact solution to the equations above. What happens

when such a wave is perturbed? Compare unperturbed to perturbed solutions.
· In the channel, what happens when only a single wave can grow? Look at the

amplitude of the wave and the lower layer zonally averaged PV yQ2y+ < q2 > (since Q2y

is a constant) to explain qualitatively what happens.
· Consider a case with many unstable waves and describe briefly what happens.
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