
Roadmap #1: BT Vorticity Eqn.

Cartesian tensors:

δij and εijk
εijk = εjki = −εikj

εijkεimn = δjmδkn − δjnδkm ∗

(∇φ)i = ∂iφ

∇ · u = ∂iui
∗

(a× b)i = εijkajbk
∗

(∇× u)i = εijk∂juk
∗

Starred eqns use the summation convention: any index repeated on one side of the = sign
but absent on the other is summed over.

• Prove ∇×∇×u = ∇(∇ ·u)−∇2u This is really a definition of the Laplacian acting
on a vector. In Cart. coord., it is just the scalar Laplacian (∇2φ = ∇ ·∇φ) acting on
each component.

• For earth coords λ, θ, z = r − a find ∇2φ and ∇2u with u = wẑ.

Helmholtz decomposition:

u = −∇×Ψ−∇φ with ∇ ·Ψ = 0

• set u = ∇2w and use defn of vector ∇2. How are φ and Ψ related to the divergence
and vorticity if u is the velocity?

• 2D (x and y): Let u = ud + uc with

∇ · u = ∇ · ud , ∇× u = ∇× uc

and

φ = −
∫ x

ud · t̂ ds , ψ = −
∫ x

uc · n̂ ds

Show these are well-defined (path independent) and that

ud = −∇φ , uc = −∇× ψẑ = ẑ×∇ψ

and ẑ · ∇ × u = ∇2ψ

• What approx are necessary for these to hold on the sphere?
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Rotation

If we write the transformation from an inertial frame x′ from a rotating frame x as

x′ = R(t)x , R =

 cos Ωt − sin Ωt 0
sin Ωt cos Ωt 0

0 0 1


then Newton’s laws become

v′ = Rv + Ṙx , a′ = Ra + 2Ṙv + R̈x = f ′/m = Rf/m

Therefore
D

Dt
v + 2R−1Ṙv + R−1R̈x = f/m

• work out the matrices and show that

2R−1Ṙ = 2Ω

 0 −1 0
1 0 0
0 0 0

 , R−1R̈ = −Ω2

 1 0 0
0 1 0
0 0 0

 , R−1R̈x = −∇1

2
Ω2(x2+y2)

Vorticity equation:

• Euler equations with ζ = ∇× u can be written

∂

∂t
u + (ζ + 2Ω)× u = −1

ρ
∇p−∇|u|

2

2
−∇Φ

- for BT system ρ = const or ρ = ρ(p), r.h.s. = −∇B.

• write eqn for ∂
∂tζ and for ∂

∂tζi

• 2D – with u = ẑ×∇ψ, rewrite the momentum equations and look at the divergence
and divergence of −ẑ× eqn. Use q = ζ3 + f , f = ẑ · 2Ω

• End result:
- PV eqn

∂

∂t
q + u · ∇q = 0 or

∂

∂t
q + (ẑ×∇ψ) · q = 0 or

∂

∂t
q + ẑ · (∇ψ ×∇q) = 0

- Inversion
∇2ψ = q − f
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Inversion

• Greens’ functions
∇2G(x|x′) = δ(x− x′)

or, in the absence of boundaries,

∇2G(x− x′) = δ(x− x′)

If
∇2ψ = ζ

then

ψ(x) =

∫
dx′G(x− x′) ζ(x′)

• BT form

G(x) =
1

2π
ln(x)

Point vortices

ζ = siδ(x−Xi(t))
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• Show that

∂

∂t
Xi = sjG

′(|Xi−Xj |)
1

|Xi −Xj |
(−[Yi−Yj ], [Xi−Xj ]) = sjG

′(|Xi−Xj |)
ẑ× (Xi −Xj)

|Xi −Xj |

with G′(r) = d
drG(r)

• Flow V = s/2πr

(u, v) =
s

2πr2
(−y, x)

• dipoles
x(0) = 0 , y(0) = ±d/2 , s = ±S

• unequal strengths – show they rotate around a point between the vortices when they
are the same sign and outside but on the line joining them when they are opposite
signs.

• Inversion of a patch: suppose ζ = SH(r0− r) with H the step function. Find the flow
and streamfunction (solve in polar coords).

Rossby Waves

• Rossby waves - semigeostrophic viewpoint
- Write the momentum equations on the β − plane for a case where ψ = ψ(x, t)

(no y-dependence) using this to set the value of u.
- Find the pressure; use this to simplify the ∂

∂tv equation
- Look at the wave solutions and show that ω = −β/k
- Note the two kinds of balances of terms here

• Rossby waves on a sphere or beta plane
- let ζ = −K2ψ; what does the BTVE become? What happens to the nonlinearity?
- what is the dispersion relation?
- what do solutions on the sphere look like?

• Rossby waves on a vorticity jump – we’ve done the circular problem, now consider the
simpler zonal flow problem

ζ = ∇2ψ = ζ0 + ∆H(y − η(x, t))

∂

∂t
η =

d

dx
ψ(x, η(x, t), t)

= ψy(x, η, t)
∂η

∂x
+ ψx(x, η, t)

' ψy(0)
∂η

∂x
+ ψ′x(x, 0, t)

• To solve, let’s first write the more general form

∇2ψ = ζ0 + ∆jH(y − yj − ηj)
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where ηj will be taken to be sinusoidal with wavenumber k.
- Define (

∂2

∂y2
− k2

)
Gk(y − y′) = δ(y − y′)

and show that

u(y) = −
∫ y

ζ0 −∆jG0(y − yj)

ψ′(y) = −∆jηjGk(y − yj) ⇒

v′(y) = −Gk(y − yj)∆j
∂

∂x
ηj

- Now write the equation for ∂
∂tηi Note that this is just a standard eigenvalue

equation for waves of the form exp(k[x− ct]).
- Solve for the single front

Shear instability

• Shear layer instability: solve when

ζ0 = 0 , ∆j = ∓1 , yi = ∓1

2

What do these mean in terms of nondimensionalization?

• Rayleigh theorem: For the above problem, but with arbitrary ∆’s, show that insta-
bility requires ∆1∆2 < 0.

• Fjortoft theorem: Add ζ0 and show that you stabilize the flow when ui∆i becomes
negative.

• Derive the ordinary Rayleigh equation (with β) using u = U , q = Q

(U − c)
(
∂2

∂y2
− k2

)
ψ +Qyψ = 0

divide by U − c assuming the flow is unstable so that U 6= c anywhere, multiply by
ψ∗, integrate over y and look at the imaginary and real parts. Use these to restate
Rayleigh’s and Fjortoft’s thms.

• Arnold’s Theorem:

∂

∂t
q + J(ψ, q) = 0 , J(A,B) =

∂(A,B)

∂(x, y)
= det

(
Ax Ay
Bx By

)
Basic state (could be 2D):

J(Ψ, Q) = 0 ⇒ Ψ = Ψ(Q)

Perturbations:
∂

∂t
q′ + J(Ψ, q′) + J(ψ′, Q) = 0
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Energy
∂

∂t

∫
1

2
|∇ψ′|2 =

∫
ψ′ΨQJ(Q, q′)

Not quite enstrophy

∂

∂t
ΨQ

1

2
q′2 = −

∫
ΨQq

′J(ψ′, Q) = −
∫
ψ′ΨQJ(Q, q′)

⇒
∂

∂t

1

2

∫
|∇ψ′|2 + ΨQq

′2 = 0

Stable if ΨQ > 0.

• Zonal flow. Translational symmetry implies we can take Ψ = −
∫ y

U + λy. Then

ΨQ = −U − λ
Qy

, Qy = β − Uyy

gives Rayleigh and Fjortoft criteria.

• Circular vortices Ψ =
∫ r
V − 1

2λr
2

ΨQ =
V − λr
Qr

, Qr =
∂

∂r

1

r

∂

∂r
rV

stable if Qr is uniform in sign. If Qr > 0 then ∂
∂r rV > 0 implying a vortex with

angular momentum increasing outwards is stable.

• waves on a patch
ζ = SH(r0 + η(θ, t)− r)

estimate ψ assuming η is very small:
- you can Taylor-expand

∇2 Ψ = SH(r0 − r)

∇2 ψ′ = S
[
H(r0 + η − r)−H(r0 − r)

]
' SηH′(r0 − r)
= Sηδ(r0 − r)

Solve for η = η0 cos(mθ − ωt)
- the boundary is a material surface so that

∂

∂t
η + v(r0 + η, θ, t)

1

r0 + η

∂

∂θ
η = u(r0 + η, θ, t)

Linearize this and find ω. These are a kind of Rossby wave, travelling with the
high PV fluid to the right (but advected by the background flow V = ∂

∂rΨ.
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• Vortex instability: Use

q′ = −Qrη(r)eımθ−ıωt ⇒ ψ′ = −
∫
dr′Gm(r, r′)Qr(r

′)η(r′)

with the eımθ−ıωt implicit[
1

r

∂

∂r
r
∂

∂r
− m2

r2

]
Gm(r, r′) = δ(r − r′)

so that

−ıωη(r) = −ımV

r
η + ım

1

r

∫
G(r, r′)Qr(r

′)η(r′)

or
V

r
η(r)− 1

r

∫
Gm(r, r′)Qr(r

′)η(r′) = ωη(r)

We can look for exp(ımθ), discretize in r and write the integral as a matrix operator;
the equation becomes an ordinary matrix eigenvalue problem. We use the exp(ımθ)
form for G. Note that

1

r

∂

∂r
rV = Q ⇒ 1

r

∂

∂r
r
∂

∂r
V − 1

r2
V = Qr ⇒ V (r) =

∫
G1(r, r′)Qr(r

′)

So we can see something peculiar about m = 1: one solution is η = 1, ω = 0

Beta drift

The evolution of an isolated vortex on the β-plane is complicated; we can gain some
insight from the linear problem

∂

∂t
ζ = −β ∂

∂x
ψ , ∇2ψ = ζ

If we start with a ζ(x, y, 0) = ζ0(r), then

∂

∂x
ψ = cos θ

∂

∂r
ψ = V (r) cos θ with V (r) =

1

r

∫ r

0

r′ζ0(r′)

For a patch ζ0 = A exp(−r2/2L2)

V =
A

r

[
1− e−r

2/2L2
]

Thus ζt = −βV cos θ shifts the vortex to the west, but also has larger-scale β-gyres,
correxponding to a dipolar flow, with an anticyclone to the east and a cyclone to the west.
These then bring in the nonlinear terms and induce northward acceleration. The algebra
gets messy, but we can instead solve for the Taylor series in time numerically.
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Matrix form and vorticity/Bernoulli

The Cartesian form of the advection is

uj
∂ui
∂xj

=

 ux uy uz
vx vy vz
wx wy wz

 u
v
w


Later, we’ll split the rate-of-strain matrix into symmetric and antisymmetric parts; for
now, however, remove the antisymmetric part explicitly

uj
∂ui
∂xj

=

 0 uy − vx uz − wx
vx − uy 0 vz − wy
wx − uz wy − vz 0

+

ux vx wx
uy vy wy
uz vz wz

 u
v
w


=

 0 −ζ3 ζ2
ζ3 0 −ζ1
−ζ2 ζ1 0

+

ux vx wx
uy vy wy
uz vz wz

 u
v
w


The last term is just ∇[ 12 |u|

2 while the first term is a rotation matrix around the vector ζ 0 −ζ3 ζ2
ζ3 0 −ζ1
−ζ2 ζ1 0

 u
v
w

 =

−ζ3v + ζ2w
ζ3u− ζ1w
−ζ2u+ ζ1v

 = ζ× u

Thus

uj
∂ui
∂xj

= ζ× u +∇1

2
|u|2
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