
Roadmap #2: Three Dimensions: The Importance of Balance

Ertel potential vorticity (PV) theorem

• general form

q = αZ · ∇θ ,
D

Dt
q = 0

with Z = ζ + 2Ω the absolute vorticity vector and α = 1/ρ. Certain conditions have to
apply.

- simplest standard derivation:
1: write the product rule form for ∂

∂tq

2: for ∂
∂tZ, use the curl of

∂

∂t
u+ Z× u = −α∇p−∇1

2
|u|2 −∇Φ+ F

with F representing non-conservative forces (friction). Do not expand∇×(Z×u).
Instead, put this back in (step 1) and use the identity

∇θ · (∇×A) = ∇ · (A×∇θ) (prove)

Use the triple × rule for vectors on (Z× u)×∇θ. Terms like u · ∇θ and Z · ∇θ
are scalars – no particular coordinate trickery required. The other vector identity
you need is ∇ · (λA) = λ∇ ·A+A · ∇λ.
3: For ∂

∂tθ, assume it’s conserved except for some small term H

D

Dt
θ = H

(θ could be the entropy; for an ideal gas the latter is cp ln θ.)
4: for ∂

∂tα use the conservation of mass. Replace all Z · ∇θ with q/α

5: you should be able to cancel most terms now, ending up with D
Dtq equaling

various non-conservative terms and one involving the gradients of θ, p, and α.
6: discuss why the latter term might vanish

- Derivation from the circulation thm (conservative form)
1: Consider a material contour X(λ, t) on an surface of constant θ. Show that in
an inertial frame

d

dt

∮

u′ · dX = −
∮

α∇p · dX

2: if α = α(θ, p) show the baroclinic torque term vanishes.
3: use u′ = u+Ω×X and Stokes’ thm to write this in terms of the area enclosed
by the contour, and Z · n̂. Note that n̂ = ∇θ/|∇θ|
4: consider two neighboring theta surfaces and use conservation of mass to relate
area changes to the thickness of the little cylinder made up of the boundary of
the area (the contour) and the two surfaces: 1/|∇θ.
5: put this back in step 3 and you’re done.
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Inversion

Although we have a conserved scalar, the inversion to determine the velocities is no
longer possible. The PV depends on u, θ, and ρ. Even for an incompressible fluid with
u = ∇×Ψ and ζ = ∇2Ψ (when ∇ ·Ψ = 0), we still have two streamfunction variables and
the other two all combined in q. We need some additional relationships to find the flow
given q; these can be provided by balance equations – hydrostatic and geostrophic being
the standard ones.

Hydrostatic balance

• why should the large-scale flow be hydrostatic? ∂
∂zp = −gρ where ∇Φ = gẑ

• alternate vertical coords
- change to (x, y, ξ, t) so that z = z(x, y, ξ, t) is now a dependent variable.
- Replace the vertical coordinate z by ξ. Show

∂

∂x
→ ∂

∂x
− zx
zξ

∂

∂ξ

(likewise ∂
∂t ,

∂
∂y ) and

∂

∂z
→ 1

zξ

∂

∂ξ

The new vertical velocity is ω = D
Dt
ξ; show that the advection operator becomes

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂ξ

The hydrostatic equation

∂

∂z
p = −gρ → 1

ρ

∂

∂ξ
p = −gzξ

so that the horizontal momentum eqns have

−1

ρ
∇p → −1

ρ
∇p−∇gz

D

Dt
u+ f × u = −1

ρ
∇p−∇φ

- The mass equation gives

D

Dt
ln ρ+∇ · u− ∇z · uξ

zξ
+

1

zξ

∂

∂ξ

D

Dt
z = 0

or
D

Dt
ln ρzξ +∇ · u+

∂

∂ξ
ω = 0
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D

Dt
ln(−pξ) +∇ · u+

∂

∂ξ
ω = 0 or

∂

∂t
h+∇ · hu+

∂

∂ξ
hω = 0

(h could be pξ). The thermodynamic equation is not changed

D

Dt
ρ− 1

c2s

D

Dt
p = 0

PV

q =
1

h
[∇× u+ f ] · ∇θ

and we still need ∇θ · (∇ρ×∇p) = 0.
Boundary conditions are messy though. The bottom is now at a time- and space-
dependent value ξs such that

φ(x, y, ξs, t) = gH(x, y)

The kinematic condition becomes

ω(x, y, ξs, t) =
∂

∂t
ξs + u(x, y, ξs, t) · ∇ξs

Commonly used forms

• pressure coordinates
ξ = p ⇒ ∇p = 0 , h = 1

D

Dt
u+ f × u = −∇φ

∂

∂ξ
φ = −1

ρ

∇ · u+
∂

∂ξ
ω = 0

D

Dt
ρ− ω

c2s
= 0

For an ideal gas with

θ

θ0
=
ρ0
ρ

(

p

p0

)1/γ

We can instead use
∂

∂ξ
φ = −G(p)θ

D

Dt
θ = 0
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The PV is
q = (∇× u+ f) · ∇θ

• ocean pressure coordinates

p = −ρ0gξ ⇒ ∇p = 0 , h = ρ0g

D

Dt
u+ f × u = −∇φ

∂

∂ξ
φ = g

ρ0
ρ

= b

∇ · u+
∂

∂ξ
ω = 0

D

Dt
b = −gρ0

ρ2
D

Dt
ρ = − gρ0

ρ2c2s

D

Dt
p = ω

ρ20g
2

ρ2c2s
≃ ω

g2

c2s

and, if we regard c2s as a function of ξ, we can redefine the buoyancy to include this term;
its vertical derivative is just N2 including the compressibility.

The PV is
q = (∇× u+ f) · ∇b

• pressure-like coords – let the vertical coordinate be ξ(p), defined by some specified mean
density state ρ(ξ) by

∂p

∂ξ
≡ −gρ

The momentum equations look like the hydrostatic Boussineq equations with p/ρ0 replaced
by φ = gz (remember z is a dependent variable, not a coordinate) and the buoyancy

∂φ

∂ξ
= b ≡ gρ/ρ

The mass equation is

∇ · ρu+
∂

∂ξ
ρω = 0

The thermodynamic equation gives

∂

∂t
b+ u · ∇b+ ωS = 0 , S = bξ − b

ρξ
ρ

− b2

c2s
=
ρ2

ρ2
N2

Note that b is nearly g if ρ is close to ρ, so the last two terms make sense. The PV is

q =
1

ρ
(∇× u+ f) · ∇θ
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The boundary conditions can be simplified if ξs does not vary too much: φ(x, ξs(x, t), t) =
gH(x) becomes

φ(x, y, 0, t) + g
ρ(0)

ρ(x, y, 0, t)
ξs = gH

and

ω(x, y, 0, t) =

(

∂

∂t
+ u · ∇

)

[ρ(x, y, 0, t)ρ(0)(H − φ(x, y, 0, t)/g)]

• isentropic coords.
- Replace the vertical coordinate z by θ. Show

∂

∂x
→ ∂

∂x
− zx
zθ

∂

∂θ

(likewise ∂
∂t ,

∂
∂y ) and

∂

∂z
→ 1

zθ

∂

∂θ

The new vertical velocity is ω = D
Dt
θ; show that the advection operator becomes

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂θ

If θ is conserved ω = 0, and advection becomes two-dimensional. We’ll use that form
in the following.

- for an ideal gas
D

Dt
u+ f ẑ× u = −∇M

M = cpT + Φ = θΠ+Φ with Π = cp(p/p0)
R/cp .

- use w = D
Dtz in the mass equation to get

∂

∂t
h+∇ · (uh) = 0

with the thickness being h = −∂p
∂θ

.
- PV: Show that

D

Dt
q = 0 , q =

ζ + f

h

with ζ = ẑ · (∇× u) (vx − uy on the β-plane).
- Show that

Mθ = Π and Mθθ = −R
(

p

p0

)

−1/γ

h
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Shallow water system

The equations in isentropic coordinates, if discretized in θ, are simply a stack of
shallow water systems (but with a more complicated relationship between the pressure
and the height fields – in the Boussinesq case it’s Mθθ = −h instead of M = gh). The
equations are

∂

∂t
u+ (ζ + f)ẑ× u = −∇(gh+

1

2
|u|2)

∂

∂t
h+∇ · (hu) = 0

• shallow water PV: show that

q =
ζ + f

h

is conserved. But we are going to subtract off the large, nearly constant part f0/h0 and
multiply by h0 to get a conserved property

Q = h0q − f0 =
h0
h

[

ζ + βy + f0
h0 − h

h0

]

• write the equations in terms of the streamfunction and potential

u = ẑ×∇ψ −∇ϕ

Note that the PV involves only two of these: ζ = ∇2ψ and h/h0. Inversion requires a
link between these, relating h/h0 to ψ. Time-stepping then needs an additional statement
about φ.
• quasigeostrophy: we use the geostrophic relation for small rossby number

f0ψ = g(h− h0)

h− h0 ∼ Ro h0 and ∇ϕ ∼ Ro ∇ψ. Then

Q = ∇2ψ + βy − f2
0

gh0
ψ ,

∂

∂t
Q+ J(ψ,Q) = 0

- formal approach: Nondimensionalize and expand in Ro assuming Ro ∼ βL/f0 ∼
(h− h0)/h0.

- wave approach
Here, we build on the nature of linear solutions to the initial value problem to separate

out and remove the gravity waves, leaving only the slow motions. The archetype is the
“geostrophic adjustment” problem.
• geostrophic adjustment; separation into balanced and unbalanced flows: First, we’ll solve
the linear problem, then look briefly at the nonlinear system, and then use the insights to
simplify the dynamics
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- consider the linear equations for a 1-D system with constant f

∂

∂t
u− fv = − ∂

∂x
gh′

∂

∂t
v + fu = 0

∂

∂t
h′ +H

∂

∂x
u = 0

with initial conditions u = 0, v = v0(x), h
′ = h′0(x).

- show that
∂

∂t
q = 0 with q =

∂

∂x
v − f

H
h′

- in the divergence equation ( ∂
∂x

of the x-momentum), eliminate ∂
∂x
v using the definition

of the linear PV just above, and ∂
∂t
ux using the mass equation. The result is an

equation for the thickness. Since q(x, t) = q0(x), you can write an equation for the
steady part and the wavelike part.

- find the dispersion relation for the wave-like part
- Note that the steady part is entirely determined by the PV (invertable!) and the
wavelike part has no PV signal.

• Nonlinear case: The simplest nonlinear problem starts with a box initial height field

h = h0 ∗ [−
L

2
< x <

L

2
]

We can look for a steady state solution, though there really is no way for the gravity waves
to escape here. The edges will settle to a position ±R/2. Thus

q =
ζ + f

h
=

f

h0

But for steady flow, u must vanish and v = ghx/f : it becomes geostrophically balanced.
Or, defining ψx = v,

∇2ψ = f
h

h0
− f =

f2

gh0
ψ − f ⇒ ψ =

gh0
f

+B cosh(x/Rd)

Rd =
√
gh0/f . Setting ψ = 0 at R/2 gives

B =
−gh0/f

cosh(R/2Rd)

Setting the final mass anomaly to the initial one h0L gives a transcendental equation for
R

L = R− 2Rd tanh(R/2Rd)

Asymptotically, L = R − 2Rd.
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Next we start with a box initial height field but a non-zero height outside

h = h0 + (h1 − h0) ∗ [−
L

2
< x <

L

2
]

When all the gravity waves radiate away, the flow will become steady and the boundary
between the two PV values will settle to positions ±R/2. Thus

q =
ζ + f

h
=

f

h0
+

(

f

h1
− f

h0

)

∗ [−R
2
< x <

R

2
]

But for steady flow, u must vanish and v = ghx/f : it becomes geostrophically balanced.
Or, defining ψx = v, h = h0 + (fψ/g). In the outer regions, then

∇2ψ =
f

h0
(h0 +

fψ

g
)− f =

f2

gh0
ψ ⇒ ψ = A exp(−x/R0)

with R0 =
√
gh0/f . In the inner region

∇2ψ =
f

h1
(h0 +

fψ

g
)− f =

f2

gh1
ψ − f

h1 − h0
h1

⇒ ψ =
g(h1 − h0)

f
+B cosh(x/R1)

R1 =
√
gh1/f . Matching ψ and ∂

∂x
ψ at R/2 gives

B =
−g∆/f

cosh(R/2R1) + (R0/R1) sinh(R/2R1)
, Ae−R/2R0 = −B(R0/R1) sinh(R/2R1)

Setting the final mass anomaly to the initial one ∆L gives a transcendental equation for
R

L =
RR1 cosh(R/2R1) + (2R2

0 +RR0 − 2R2
1) sinh(R/2R1)

R1 cosh(R/2R1) +R0 sinh(R/2R1)

The radially symmetric problem does not seem to have analytic solutions: we have

ζ =















fh′

h0
r > R

f

h1
h′ − f

h1 − h0
h1

r < R

with

h′ = h− h0 , fv +
v2

r
= g

∂

∂r
h′ , ζ =

1

r

∂

∂r
rv

The centrifugal term prevents an analytical solution, but it can be done numerically pretty
easily using a shooting method. Once again, you solve for v(r) and h(r) then integrate the
latter to find the L value corresponding to the R chosen.
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The linear case corresponds to neglecting the centrifugal term and the difference be-
tween h1 and h0 in specifing the deformation radius. The

∇2ψ − 1

R2
d

ψ = −f h1 − h0
h1

∗ [r < L]

Rd = f2/gh0. This has constant + I0(r/Rd) solutions inside and K0(r/Rd) solutions
outside. The latter implies that the net vorticity is zero. This does not mean the vortex
is unstable: the PV gradient still has only one sign.
• slow adjustment: The previous problems suggest that gravity waves will radiate away
leaving the PV mode to evolve slowly. Numerically, however, you either need some means
of soaking them up or letting them leave the domain. For theoretical studies, though,
you’d like to concentrate on the slow mode; in addition, there’s the question of whether
the shock represented by the initial conditions really is the appropriate representation of
the large-scale motions. One way to approach an answer is to consider a slowly forced
problem:

- use the linearized equations
- add mass by a source term

∂

∂t
h+H∇ · u = S(x) =

s

T
cos(kx) ∗ [0 < t < T ]

- find the steady part of the flow for t > T
- calculate the energy in the steady flow

E =
1

2
〈Hv2 + gh2〉

with the average being over one spatial period 2π/k.
- compare this to the total energy input

g

∫ T

0

〈hS〉

and show that most of the energy is in the steady flow when T > 1/f .
- you can do this in polar coords with S ∝ J0(kr) instead – good exercise in special
functions. You could also consider a localized source and look at the fraction of energy
over the whole domain and over some finite area including the source.

• back to waves and QG: to find the equation for the slow mode evolution
- write the vorticity ζ and divergence D equations

∂

∂t
ζ + f0D = −(ζ + βy)D − u · ∇(ζ + βy) = Fζ

d

dt
D − f0ζ +∇2gh′ = βyζ − βu+

∂

∂x
vζ − ∂

∂y
uζ −∇2 |u|2

2
= FD

∂

∂t
h′ +HD = −h′D − u · ∇h′ = Fh
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• eliminate D from 1st and 3rd and rewrite 2nd in terms of Q = ζ − f0h
′/H

∂

∂t
Q = Fζ −

f0
H
Fh

d

dt
D − f0Q+∇2gh′ − f2

0

gH
gh′ = FD

∂

∂t
h′ +HD = Fh

- Split h′ into the balanced part

(∇2 −R−2

d )gh′b = f0Q or Lh′b =
f0
g
Q ⇒ h′b = L−1 f0

g
Q

and the rest h′w = h′ − hb

∂

∂t
Q = Fζ −

f0
H
Fh

d

dt
D + Lgh′w = FD

∂

∂t
h′w +HD = Fh −L−1 f0

g
(Fζ −

f0
H
Fh)

- The slow evolution, to a first approximation says that h′w and D are zero – the gravity
waves have the two terms on the left of the 2nd and third balancing, but the time
scales are much longer than GW periods, so that the ∂

∂t terms are small. Thus we

can find ∂
∂tQ by evaluating the rhs of the 1st eqn under these circumstances. Since

D ∼ 0, the split of the velocities into ψ and φ

u = ẑ×∇ψ −∇φ = ẑ×∇ψ since ∇2φ = −D

Then

Fζ = −J(ψ, ζ + βy) , Fh = −J(ψ, h′b) and Q = ∇2ψ − f0
H
h′b

From the definition of h′b, we see that h′b =
f0
g ψ and

∂

∂t
Q = −J(ψ,Q+ βy) , Q = Lψ = [∇2 −R−2

d ]ψ

• QG Rossby waves and inversion
The QG equations are linear, so that superposition applies

ψ(x) =

∫

dx′G(|x− x′|)Q(x′)
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The equivalent of a point vortex

(∇2 − γ2)G(x− x′) = δ(x− x′) , γ = 1/Rd

is now shielded

G = − 1

2π
K0(γr) ,

∂

∂r
G =

γ

2π
K1(γr)

– the velocity falls off as exp(−r)/√r, the vorticity is negative around the point, and has
net integral zero.

ζ = δ(x− x′)− γ2

2π
K0(γr)

A finite area vortex

ψ = −Q0γ
−2

{

1− γRK1(γR)I0(γr) r < R
γRI1(γR)K0(γr) r > R

has velocity

V =
∂

∂r
ψ = Q0R

{

K1(γR)I1(γr) r < R
I1(γR)K1(γr) r > R

and vorticity

∇2ψ = Q0γR

{

K1(γR)I0(γr) r < R
I1(γR)K0(γr) r > R

• Rossby waves:

Q′ = (∇2−γ2)ψ = −K2ψ ⇒ J(ψ,Q) = J(ψ,−K2ψ+βy) = J(ψ, βy) = β
∂

∂x
ψ = − β

K2

∂

∂x
Q′

∂

∂t
Q′ − β

K2

∂

∂x
Q′ = 0 ⇒ c = − β

K2

For plane waves, this gives

ω = − βk

k2 + ℓ2 + γ2

Useful to write this as

(

k +
β

2ω

)2

+ ℓ2 =

(

β

2ω

)2

− γ2 , |ω| ≤ β

2γ
= −1

2
βRd , |c| ≤ βR2

d

- reflection and transmission problems: these will have the same values of ω and of the
tangential component of k.

• balance and inversion; linear and higher order: the QG equations give an approximation
to the slow evolution which again combines PV conservation (but now QGPV) and inver-
sion. But we’ve had to take h′ << H and small Rossby number. What about nonlinear
terms?
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- Circular patch: The problem is

1

r

∂

∂r
rv − f0

h′

H
=
H + h′

H
Q ∗ [r < R]

v2

r
+ f0v = g

∂

∂r
h′

with exterior PV f0/H and interior value (f0 +Q)/H. Scale r by R, v by |Q|R and
h′ by f0|Q|R2/g

1

r

∂

∂r
rv − γ2h′ = Q(1 + ǫγ2h′) ∗ [r < 1]

or

1

r

∂

∂r
rv − γ2

(

1 +Qǫ ∗ [r < 1]
)

h′ = Q ∗ [r < 1]

ǫ
v2

r
+ v =

∂

∂r
h′

with ǫ = |Q|/f0 the Rossby number and γ2 = f2
0R

2/gH2 = R2/R2
d the stratification

parameter. Here Q = ±1.
- for cyclones, the velocities and thickness perturbations are weaker than predicted by
QG theory. If, however, we simply drop the centrifugal term, the equations become
linear. The deformation radii inside and outside are different: R out

d =
√
1 + ǫ R in

d .
Note that the exact vorticity equation

∇2ψ = h′q +Hq − f0

with the geostrophic approx. becomes

∇2ψ − f0q

g
ψ = Hq − f0 = Q

so that we are replacing a factor f0/H by q in the definition of Rd. The velocities
from this are very close, but the height field is a bit weaker since it does not have to
compenstate the centrifugal terms.

- for anticyclones, the velocities and thickness perturbations are stronger than QG;
again with the variable Rd, the velocities are similar, but the heights are now weaker,
since v2/r is opposite in sign to fv. The ǫ values are limited; when they become
greater than 1, we have “anomalous highs” with a reversed central pressure.

- Steady flow: in this case

u =
1

h
ẑ×∇Ψ

and

u·∇B = 0 , B = gh+
1

2

( |∇Ψ|
h

)2

= B(Ψ) , u·∇q = 0 , q =
∇ · 1

h
∇Ψ+ f

h
= q(Ψ)
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These are not independent:

∂B

∂Ψ
=

∂
∂x
B

∂
∂x

Ψ
=

(ζ + f)v

hv
= q

If we know q(Ψ), we can integrate to get B(Ψ), solve the cubic equation to get h(Ψ)
and then solve the PV equation to get Ψ. Note that steadily propagating solutions
have

u− cx̂ = ẑ×∇Ψ , B(Ψ) = gh+
1

2
|u− cx̂|2 + c

∫ y

f

with the same q and relationship ∂B/∂Ψ = q. But this inversion is not necessarily
going to be unique: You could have a wavelike feature or a zonal flow. In QG, for
example,

[∇2 −R−2

d ]ψ + βy = −K2(ψ − cy) , c = −β/K2

has wave-like, Bessel function, zonal flow solutions, complex patterns,...
More critical, though, is the fact that this procedure is not the same as inverting q(x, y).
So, what can we do in that case?

- Represent Ψ as a polynomial in q with unknown coefficients.

Ψ = Anq
n ⇒ B = An

n

n+ 1
qn+1 +B0 = gh+

1

2h2
[Annq

n−1]2|∇q|2

Solve this cubic for h. Put that in

qh = ∇Annq
n−1

h
∇q + f

and minimize the error with respect to An and B0.
- Let’s consider a more general inversion using the Hemholtz decomposition and look at
the horizontal divergence equation, dropping all the terms involving D (and therefor
ϕ). We can start from the momentum equations with ϕ dropped

∂

∂t
ẑ×∇ψ +−(∇2ψ + f)∇ψ = −∇[gh+

1

2
|∇ψ|2]

taking minus the divergence gives a nonlinear balance equation

∇ · (∇2ψ + f)∇ψ +
1

2
∇2|∇ψ|2 = ∇2gh

which can be combined with the PV

∇2ψ + f = qh

to solve for ψ and h. The PV evolves by the rotational flow

∂

∂t
q + J(ψ, q) = 0
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We could approach this iteratively: start with h ≡ H + f0ψ/g + h′, so that the PV
equation is

∇2ψ − γ2ψ = Q− βy +

[

Q
f0ψ

gH
+Q

h′

H
+ f0

h′

H

]

and the divergence/ balance equation yields

∇2gh′ = ∇ · (∇2ψ + βy)∇ψ − 1

2
∇2|∇ψ|2 = ∇ · βy∇ψ + 2J(ψx, ψy)

We solve the PV equation for ψ, neglecting the terms in square brackets, then solve
the balance eqn. for h′. We substitute these estimates into the square bracket terms
and iterate.

- Note that for the radially symmetric case with β = 0, this procedure gives the correc-
tion term

1

r

∂

∂r
r
∂

∂r
gh′ =

2

r

∂(V cos θ, V sin θ)

∂(r, θ)
=

2

r
VrV =

1

r

∂

∂r
V 2

implying

r
∂

∂r
gh′ = V 2

- However, the procedure may not converge; for cyclones with Rossby number bigger
than 1

2
(at least for γ = 1) it diverges immediately. But it does converge with about

5 iterations for both cyclones and anticyclones with Rossby number less than about
0.2.
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Balance equations - 1 page

From the SW equations [ǫ3ij → ǫij =

(

0 1
−1 0

)

and ǫijǫjk = −δik]

∂

∂t
ui − ǫij(f + ζ)uj = −∇i

[

gh+
1

2
ujuj

]

∂

∂t
h+∇ihui = 0

We derive the vorticity equation (ζ = ǫmi∇mui)

∂

∂t
ζ +∇m(f + ζ)um = 0

or
∂

∂t
hq +∇mhqum = 0

With the mass equation, we then find conservation of PV

∂

∂t
q + um∇mq = 0 (PV )

The divergence equation (D = ∇iui)

∂

∂t
D − ǫij∇i[(f + ζ)uj ] = −∇2

[

gh+
1

2
ujuj

]

We use this to derive a balance condition by neglecting the divergent flow so assuming
that ui = −ǫij∇jψ so that D ≃ 0 and

ǫij∇i[(f + ζ)ǫjk∇kψ] = −∇2

[

gh+
1

2
|∇ψ|2

]

or

∇2

[

gh+
1

2
|∇ψ|2

]

= ∇ · (f +∇2ψ)∇ψ (B)

Given the PV

q =
∇2ψ + f

h
(q)

we can solve (q) and (B) for ψ and h and then step the PV forward using (PV) in the
form u = ẑ×∇ψ in

∂

∂t
q + J(ψ, q) = 0

15



• Approximate inversion: if we split h into its mean, the geostophic part, and the rest

h = H +
f0
g
ψ + h′

and write Q = Hq−f0 or q = (Q+f0)/H, the PV evolution is still conservation of Q, but

(∇2 − γ2)ψ = Q− βy +Q

(

f0ψ

gH
+
h′

H

)

+ f0
h′

H
(q1)

∇2gh′ = ∇ · βy∇ψ +∇ · ∇2ψ∇ψ −∇2 1

2
∇ψ|2 = ∇ · βy∇ψ + 2J(ψx, ψy) (B1)

Iteration: (1) given Q, take only the first two terms on the rhs of (q1), find ψ. (2) put this
in (B1) and find h′. Put ψ anf h′ in the rhs of (q1). (3) find an improved ψ. Repeat (2)
and (3) until converged.

- QG: h′ = 0 and drop Qψ terms. Scaling arguments.
- slightly modified QG: combine

γ2 +
f0Q

gH
=
f0
g
q

as coefficient of ψ.
• Omega eqn: we can estimate the divergence from the exact form

∂

∂t
h+ J(ψ, h) = ∇ · h∇ϕ ≃ H∇2ϕ

From inversions at two time steps, we can estimate ∂
∂t
h and J(ψ, h). This allows us to

solve for ϕ. Note that his gives us the vertical velocity, since

w =
z

h

D

Dt
h = −z∇ · u = z∇2φ ⇒ w(H) =

∂

∂t
h+ J(ψ, h)

In QG, this is even simpler, since h ≃ f0ψ/g. Then

∂

∂t
ψ ≃ g

f0
w

But ∂
∂t (∇2 − γ2)ψ = −J(ψ,Q) (with Q = ∇2ψ − γ2ψ + βy) so that

(∇2 − γ2)w =
f0
g

∂

∂t
Q = −f0

g
J(ψ,Q)

• Piecewise inversion: in the lab, we do a 3D version, but the fundamental question and
approach applies here as well: suppose we have two patches of PV and see the evolution of
each. Are the changes in patch (1) associated mostly with the flow from the Q1 anomalies

16



or from Q2? In QG, we can answer that precisely: from Q1 we find ψ1 =
∫

G(x, x′)Q1(x
′)

and likewise ψ2. These give u1 and u2. We then have

∂

∂t
Q1 = −u1 · ∇Q1 − u2 · ∇Q1

and can assess the advection of Q1 by u1 (self-interaction) and by u2 (forced by other).
The sum of these two ∂

∂tQn equations gives exactly the ∂
∂tQ equation.

But the balance equations have quadratic terms, so solving for ψ1, h
′

1 by setting Q2 =
0 and for ψ2, h

′

2 by taking Q1 = 0 does not give ψ = ψ + 1 + ψ2 – i.e., if we look
at the (f0/gH)Qψ term, it has Q1ψ1 + Q2ψ2 + Q1ψ2 + Q2ψ1 and the last two terms
will not appear with the procedure above. The advection is ok, but the split inversion
is not. Davis and Emanuel (1991) propose a resolution by splitting the equations as
Qψ = 1

2
(Qψ1 + Q1ψ) +

1

2
(Qψ2 + Q2ψ) with now ψ = ψ1 + ψ2 and Q = Q1 + Q2. Then

the equations [ignoring β for simplicity] become

(∇2 − γ2)ψ1 = Q1

[

1 +
f0ψ

2gH
+
f0h

′

2H

]

+
f0Q

2gH
ψ1 +

Q

2H
h′1 +

f0
H
h′1

∇2gh′1 = J(ψx, ψ1y) + J(ψ1x, ψy)

Note: these equations are linear in ψ1, h1 but have variable coefficients. We first invert
the full field nonlinearly to find ψ, h′, and secondly solve the above two equations to find
ψ1, h

′

1 and likewise for ψ2, h2. We can then evaluate u1 · ∇Q1 and u2 · ∇Q2 to see the self
vs. other interactions.

• Eddy Propagation: consider an isolated eddy with pressure anomaly gh′ (h = h0 + h′).
The mass equation implies

∂

∂t
V ′ ≡ ∂

∂t

∫

h′ = −
∮

u · n̂h = 0

as long as velocities decay rapidly enough. Define
〈

S
〉

=
∫

S/V ′. Still from the mass
equation

∂

∂t
Xi =

〈

uih
〉

, Xi =
〈

xih
′
〉

The acceleration

∂2

∂t2
Xi =

〈 ∂

∂t
uih

〉

= −
〈

∇juiujh
〉

+ ǫij
〈

fujh
〉

+ g
〈

∇i[h0h
′ +

1

2
h′2]

〉

from the momentum equations gives

∂2

∂t2
Xi = ǫij(f0 + βY )

∂

∂t
Xj + βǫij

〈

(y − Y )ujh
〉

17



The second derivative term corresponds to wobbling of the vortex by inertial waves or
rotation if elliptical. The translation comes from the beta term

∂

∂t
Xi = −β

f

〈

(y − Y )uih
〉

For a steadily translating eddy

(u− c)h = − ∂

∂y
[Ψ + ch0y] or uh =

∂

∂y
Ψ+ ch′ and vh =

∂

∂x
[Ψ + ch0y]

giving
〈

(y − Y )uh
〉

=
〈

Ψ
〉

,
〈

(y − Y )vh
〉

= 0

so that

c = −β
f

〈

Ψ
〉

Note that this is westward for cyclones (Ψ < 0 and h′ < 0) or anticyclones (both positive).
If we use a geostrophic estimate

uh ∼ ẑ×∇Ψ ∼ gh0
f

ẑ×∇[h′ +
h′2

2h0
]

c ∼ −βR2
d[1 +

〈

h′2/h0
〉

]

The factor in brackets is bigger than one for anticyclones – they move faster than the
longest linear wave, but is negative for cyclones.
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Stratified flows

Quasi-geostrophic equations and pseudo-PV

We’ll look at various derivations. All are based on b =
∫ z
N2(z′)dz′ + b′(x, t), near

geostrophic balance u ≃ ug = 1

f
ẑ × ∇φ′, and hydrostatic balance ∂

∂z
φ′ = b′, and scales

small compared to the size of the earth (βy << f)
• Simplest derivation from PV: use the hydrostatic boussinesq eqns in b coords

- the PV can be written

q̃ = H(b)q − f0 =
1

1 + h′/H

[

ζ + βy − f0
H
h′
]

- proceed as in the SW equations to get the QGPV

Q = ∇2ψ + βy − f0
H
h′ ,

∂

∂t
Q+ J(ψ,Q) = 0

- Use the vertical equation with M = p/ρ0 − bz

∂2

∂b2
M = −h′

and geostrophy to find

Q = ∇2ψ +
f2
0

H(b)

∂2

∂b2
ψ + βy

- return to z coords using

H ≃ 1/N2 and
∂

∂b
∼ H

∂

∂z

• From momentum: we’ll use the anelastic equations (appendix) in Lagrangian derivative
notation

∂

∂t
u+ ζ× u+

1

2
∇|u|2 =

D

Dt
u

D

Dt
u+ f ẑ× u = −∇φ+ bẑ

∇ · u+
1

ρ

∂

∂z
ρw = 0

∂

∂t
b = 0

with ρ(z) the density of an isentropic fluid.
- define the geostrophic and ageostrophic velocities

ug =
1

f
ẑ×∇φ , ua = u− ug

19



- then the horizontal equations become

D

Dt
u = −f ẑ× ua

The acceleration comes from the weak ageostrophic flows.
- approximate the acceleration by geostrophic advection of geostrophic momentum

ua = ẑ× 1

f

Dg
Dt

ug

At this order, we can ignore β and use ug = ẑ×∇ψ with ψ = f0φ. Therefore

ua = − 1

f0

Dg
Dt

∇ψ ,
Dg
Dt

=
∂

∂t
+ ψx

∂

∂y
− ψy

∂

∂x
=
Dψ
Dt

- Use this in the mass equation

∇ · ug +∇ · ua = −1

ρ

∂

∂z
ρw

and show that this corresponds to absolute vorticity changing from vortex stretching
of f0.

Dψ
Dt

(∇2ψ + βy) = f0
1

ρ

∂

∂z
ρw (zeta)

- Using the hydrostatic equation and geostrophy to find b′ = f0ψz. Use this in the
thermodyn eqn

Dψ
Dt

b′ + wN2 = 0 (b)

to find the rhs of the vorticity equation. Be careful with ∂
∂z (ug · ∇b′)

- You now have the PV equation

Q = ∇2ψ +
1

ρ

∂

∂z

ρ

N2

∂

∂z
ψ′ + βy ,

∂

∂t
Q+ J(ψ,Q) = 0

with the added advantage that the boundary conditions are still simple w = 0 on a
flat surface.

• the omega equation and secondary circulations
- eliminate the ∂

∂t from (zeta) and (b) to find a diagnostic equation for w (ω in pressure
coords).

- TEM approach: take the buoyancy equation

∂

∂t
b′ + J(ψ, b′) +N2w = 0

and define the transformed Eulerian w as

w+ = w + J(ψ, b′/N2)
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- how can you define the TEM ageostrophic velocity to maintain the same value of
∇ · ua + 1

ρ
∂
∂z
ρw with Ua replaced by U+

a and w by w+?
- Note that the vorticity equation becomes

∂

∂t
ζ + J(ψ,Q) = f0

1

ρ

∂

∂z
ρw+

Combine this with the modified thermo eqn

∂

∂t
ψz +

N2

f0
w+ = 0

to find the PV equation and the equivalent to the omega equation.
• the superposition principle: just as in the BTVE ans QG SW system, we can solve for
the flow from individual PV anomalies and sum them up.

Q = βy
∑

Qi ⇒ ψ =
∑

ψi with (∇2 +
1

ρ

∂

∂z
ρ
f2
0

N2

∂

∂z
)ψi = Qi

- What do point PV vortices look like? Just take ρ and N2 to be constant.
- For an isothermal atmosphere (yes, you need to go back either to the original equations
or use the pξ = −ρg coordinates)

ρ = ρ0 exp(−z/H) , N2 =
γ − 1

γ

g

H
, H = RT/g

and

∇2 +
1

ρ

∂

∂z
ρ
f2
0

N2

∂

∂z
→ ∇2 +

f2
0

N2

(

∂2

∂z2
− 1

H

∂

∂z

)

Consider the inversion equation in terms of

ψ = ψ′ez/2H

What do point vortices look like now?
- Boundary conditions: The operator to be inverted is a second order elliptic operator,
so it requires boundary conditions on the surface bounding the 3D domain. Let’s
consider the bottom at z = 0. The boundary condition is

w = 0 ⇒ Dψ
Dt

b′ = 0

The surface temperature (buoyancy) is determined by the initial condition and advec-
tion. But

ψz(x, 0, t) =
1

f0
b′(x, 0, t)

so this provides a boundary condition.

21



- we can do a bunch of inversion exercizes now
1) Start with β = 0, ρ = ρ0, N

2 = const
a) b′(x, 0) = A cos(kx),Q = 0, infinite domain; pay particular attention to warm/cyclonic,

cold/anticyclonic
b) b′(x, 0) = A cos(kx), b′(x, H) = 0
c) b′(x, 0) = 0, b′(x, H) = A cos(kx) warm? cold?
d) Q = A cos(kx) cos(πz/H), no boundary anomalies
e) General

ψ = ψ0 + ψI + ψH

with
(∇2 + 1

ρ
∂
∂z
ρ
f2

0

N2

∂
∂z

)ψ ψz(0) ψz(H)

Q− βy 0 0
0 b′(0)/f0 0
0 0 b′(H)/f0

2) Isothermal atmosphere
a) b′(x, 0) = A cos(kx), Q = 0

3) Standard atmosphere: the standard atmosphere is made up of piecewise linear T
segments, with R = 287.05

4) Ocean profile
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Appendix: Anelastic equations

We define a basic state which is hydrostatic

∇p = −ρ∇Φ

and let p = p+ ρφ, ρ = ρ/(1 + δ). Then the pressure and geopotential terms become

−1

ρ
∇p −∇Φ = (1 + δ)∇Φ−∇φ− φ∇ ln ρ+ φ∇ ln(1 + δ)−∇Φ

= −∇φ+ (δ∇Φ− φ∇ ln ρ) + φ∇ ln(1 + δ)

The last term will be dropped under δ << 1. The momentum equations become

∂

∂t
u+ (ζ+ 2Ω)× u = −∇

[

φ+
1

2
|u|2

]

+ b ẑ

with the buoyancy being
b = δ∇Φ− φ∇ ln ρ

When we drop the D
Dt

ln(1 + δ) term in the mass equation, it becomes

∇ · ρu = 0

We define the coefficients of expansion

d ln ρ = −αdθ + βdS + γdp

We now take the basic state to be isentropic and constant S, so that

∇ ln ρ = −γ ρ∇Φ , b = g(δ + γ ρφ)

Using
ln(1 + δ) ≃ δ = ln ρ− ln ρ(θ + θ′, S + S′, p+ ρφ)

≃ αθ′ − βS′ − γ ρφ

gives
b = αgθ′ − βgS′

For an ideal gas (no S and ln θ = − ln ρ+ 1

γ
ln p)

b = g
θ′

θ

- Show this directly from

ln θ(1 + θ′/θ) = − ln ρ/(1 + δ) +
1

γ
ln(p+ ρφ)

(negligibly different – p = p+ ρφ)
- find δ in terms of θ′ and p′

- evaluate RHS = − 1

ρ∇p−∇Φ

- find ∂
∂z ln ρ when θ is constant. Use ∇p = −ρ∇Φ.

- use this to find RHS ≃ −∇φ+ gθ′/θ
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Energy eqns

The KE equation is

∂

∂t

1

2
ρ|u|2 +∇ ·

[

ρu(φ+
1

2
|u|2)

]

= gραwθ′ − gρβ wS′

Given the profile of α(z) and β(z), we define A and B as their integrals so that

ρ
D

Dt
Aθ′ = ραwθ′

So that
∂

∂t
E +∇ · uE +∇ · ρuφ = 0 , E =

1

2
ρ|u|2 + ρgAθ′ − ρgBS′

- Note – isentropic atmospheres are finite. We can see in the simple case

ρ0
ρ

(

p

p0

)1/γ

=
θ

θ0
= 1

so the hydrostatic eqn. gives

gz =
p0

ρ0(1− 1/γ)

[

1−
(

p

p0

)1−1/γ
]

⇒ z(p = 0) =
H

1− 1/γ
∼ 3.5H ∼ 30km

- Ertel PV
D

Dt
q = 0 , q =

(∇× u+ f ẑ) · ∇b
ρ
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Appendix II: Not isentropic?

We will use the hydrostatic, pressure-like coordinates defined by

∂

∂ξ
p = −gρ(ξ)

Following the notes (p4), but replacing φ by φ+ gξ gives

D

Dt
u+ f × u = −∇φ

∂

∂ξ
φ = g

ρ− ρ

ρ
= b

∇ · ρu+
∂

∂ξ
ρω = 0

∂

∂t
b+ u · ∇b+ ω

(

N2 +
∂b

∂ξ
− b

∂

∂ξ
ln ρ− 2gb+ b2

c2s

)

= 0

N2 = −g ∂
∂ξ

ln ρ− g2

c2s

The QG formulation will follow in the same way: N2 (with c2s determined from ρ and the
associated p) will be the only term remaining in the vertical buoyancy advection. So we
still have

∂

∂t
Q+ J(ψ,Q) = 0 , Q = ∇2ψ +

1

ρ

∂

∂z
ρ
f2
0

N2

∂

∂z
ψ + βy

But the boundary condition at the bottom is no longer ω = 0, and the bottom is not at
ξ = 0. Recall that ω = D

Dtξ and that ξ surfaces are constant pressure surfaces. Therefore
the ground would only be a constant ξ surface if the surface pressure were constant.
Instead, the surface pressure, equivalently ξs(x, y, t), is related to the dependent variables
by

gξs + φ(x, y, ξs, t) = 0

and

ω(x, y, ξs, t) =
D

Dt
ξs

Consistent with the small ω in QG, we can approximate

ξs ≃ −1

g
φ(x, y, 0, t) , ω(x, y, 0, t) = −1

g
(
∂

∂t
+ u · ∇)φ(x, y, 0, t)

The buoyancy equation at the ground becomes

(
∂

∂t
+ u · ∇)(b− N2

g
φ) = 0

and the boundary condition relates this conserved property to ψ

∂

∂t
θ̃s + J(ψ, θ̃s) = 0 , θ̃s =

∂ψ

∂ξ
− N2

g
ψ

where we put a tilde over θ̃s to remind us that it is not the potential temperature θ(ξ = 0)
[whose variations are proportional to ψz], but rather the potential temperature at the
actual ground ξs.
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Appendix IIa: Isothermal atmosphere

For an ideal gas, it’s even simpler: we can use the relationship between potential
temperature and density to write the hydrostatic eqn as

∂

∂ξ
φ = g

ρ− ρ

ρ
= g

θ − θ

θ
⇒ θ = θ(1 + b/g)

Conservation of entropy, which is proportional to ln θ. gives

1

g

1

1 + b/g

D

Dt
b+ ωN2 = 0 ⇒ D

Dt
b+ ωN2(1 + b/g) = 0

with N2 = g ∂
∂ξ ln θ. In the QG approximation b << g, so we end up with the same

buoyancy equation and QG equation as above. The boundary conditions work the same
way

∂

∂t
θ̃s + J(ψ, θ̃s) = 0 , θ̃s =

∂ψ

∂ξ
− N2

g
ψ

• For free waves, θ̃s = 0. Find the vertical structure and deformation radius for an
isothermal atmosphere with ρ = ρ0 exp(−ξ/H). You should get Rd =

√
γgH/f . For

Earth’s atmosphere, γ = 1.4, implying an equivalent depth of 11 km.
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Ertel

1)
∂

∂t
q = −q 1

ρ

∂

∂t
ρ+

1

ρ

∂Z

∂t
· ∇θ + 1

ρ
Z · ∇∂θ

∂t

2)

∂

∂t
Z+∇× (Z× u) = −∇×

[

1

ρ
∇p

]

+∇× F =
1

ρ2
∇ρ×∇p+∇× F

∇iθǫijk∇jAk = ∇j [∇iθǫijkAk] = ∇j [ǫjki∇iθAk]

∇θ ·∇×(Z×u) = ∇· [(Z×u)×∇θ] = ∇· [u(Z ·∇θ)−Z(u ·∇θ)] = ∇· (ρuq)−Z ·∇(u ·∇θ)

⇒

∂

∂t
q = −q 1

ρ

∂

∂t
ρ− 1

ρ
∇· (ρuq)+ 1

ρ
Z ·∇(u ·∇θ)+∇θ · (∇ρ×∇p)

ρ3
+

1

ρ
∇θ ·∇×F+

1

ρ
Z ·∇∂θ

∂t

3)
1

ρ
Z · ∇∂θ

∂t
= −1

ρ
Z · ∇(u · ∇θ) + 1

ρ
Z · ∇H

∂

∂t
q = −q 1

ρ

∂

∂t
ρ− u · ∇q − q

1

ρ
∇ · (ρu) + ∇θ · (∇ρ×∇p)

ρ3
+

1

ρ
∇θ · ∇ × F+

1

ρ
Z · ∇H

4)
∂

∂t
q = −u · ∇q + ∇θ · (∇ρ×∇p)

ρ3
+

1

ρ
∇θ · ∇ × F+

1

ρ
Z · ∇H

5)
D

Dt
q =

∇θ · (∇ρ×∇p)
ρ3

+
1

ρ
∇θ · ∇ ×F+

1

ρ
Z · ∇H

6) If ρ = ρ(θ, p)
D

Dt
q =

1

ρ
∇θ · ∇ × F+

1

ρ
Z · ∇H
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