
Roadmap #3: Quasi-balanced Waves and Instabilities

QG Rossby Waves

∂

∂t
Q+ J(ψ,Q) = 0 , Q = ∇2ψ +

1

ρ

∂

∂z
ρ
f20
N2

∂

∂z
ψ + βy ≡ Lψ + βy

∂

∂t
θ + J(ψ, θ) = 0 , θ =

∂

∂z
ψ , z = 0, H

Specified background state

Q = Q(y, z) +Q′(x, y, z, t) , ψ = Ψ(y, z) + ψ′(x, y, z, t)

with
LΨ = Q− βy , Lψ′ = Q′

In general, the [zonal] mean of Q′ will not be zero. In the atmosphere (and often in the
ocean), we consider zonal means

Q = Q(y, z, t) +Q′(x, y, z, t) , ψ = ψ(y, z, t) + ψ′(x, y, z, t)

with
Lψ = Q− βy , Lψ′ = Q′

but now Q′ = 0, and, in general, Q will change with time.
- Derive the dynamical equations for Q and Q′ by taking a mean of the PV equation

and also looking at the residual.
- Show that the linearized equation for Q′ is the same if we use either the Q or Q form,

but the nonlinear equation is not.
• Interior PV waves: take Q = βy, Q′ = −K2ψ′, θ0 = 0, θH = 0

- find the dispersion relation
- show that this is an exact solution
- find K2 for waves exp(ık · x− ıωt)F (z) where

1

ρ

∂

∂z
ρ
f20
N2

∂

∂z
F = −R−2d F , Fz(0) = 0 , Fz(H) = 0

- For N2 and ρ constant (which will denote as the CONST case), find the eigenfunctions
and eigenvalues F and Rd.

- the isothermal atmosphere N2 = (γ − 1)g/γH, ρ = ρ0 exp(−z/H), find F and Rd.
• Edge waves

- Again start with the CONST case for a fluid extending from z = 0 to z = ∞. Let
Ψ = −syz and let β = 0. Find Θ. Write the dynamical equation for θ′.

- Find ψ′ assuming θ′ = A cos(k cot x− ωt).
- Show the nonlinear terms again vanish
- Find ω.
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- What happens for an infinitely deep fluid with a top surface at z = 0?
• Topographically forced waves and vertical propagation

- with topography h(x, y), the bottom condition becomes w =
Dg

Dth. Show that(
∂

∂t
+ ψx

∂

∂y
− ψy

∂

∂x

)(
ψz +

N2

f
h

)
= 0

- Consider h = h0 cos(k · x), Ψ = −Uy, Q = βy (show). Find the flow for the CONST
case. Note trapped vs propagating modes. For the latter, having a structure

exp(ıkx+ ımz)

find the proper m value using upward group velocity or energy flux.
- for the isothermal case.

• Basin and global modes

Interacting QG Rossby waves: Baroclinic Instability

• Eady model
- QG: CONST case with Ψ = −syz, Q′ = 0

1) For perturbations on the two boundaries like <θ(t) exp(ık · x)

ψ = θ0F0(z) + θHFH(z) ,
1

ρ

∂

∂z
ρ
f20
N2

∂

∂z
F = k2F

with
∂

∂z
F0(0) = 1,

∂

∂z
F0(H) = 0 ,

∂

∂z
FH(0) = 0,

∂

∂z
FH(H) = 1

2) Write the evolution equations for θ0 and θH .
3) There’s a formal solution to

∂

∂t
v = −ıkMv ⇒ v = expm(−ıktM)v(0)

The matrix exponential is defined by a Taylor series and can be calculated by using
M = ZΩZ−1 with Z the eigenvectors and Ω a diagonal matrix of eigenvalues. We
can use this directly

ṽ = Z−1v ⇒ ∂

∂t
ṽ = −ıkΩṽ ⇒ ṽi = ṽi(0) exp(−ıkΩiit)

Instability will occur when one of the eigenvalues has a positive imaginary part.
4) Take θ = θ̃ exp(−ıkct) so that

Mij θ̃j = c θ̃i

5) Find the conditions for =(c) > 0 or =(ω) > 0.
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- Balance and the Eady model We consider the 2D anelastic model with a uniform
gradient of θ and pressure in the y-direction, αgθ = N2z − fsy + b′(x, z, t), φ =
1
2N

2z2 − fsyz + fψ(x, z, t), but no other variations (and no β)

D

Dt
u− fv = −fψx

D

Dt
v = −fu+ fsz

D

Dt
w = −fψz + b

∂

∂x
ρu+

∂

∂z
ρw = 0

D

Dt
b′ − fvs+N2w = 0

The vorticity equation is

D

Dt
ζ = fvz − b′x , ζ = uz − wx = ∇ · 1

ρ
∇ϕ

and
D

Dt
v = −f

ρ
ϕz + fsz

D

Dt
b′ = fvs+

N2

ρ
ϕx

D

Dt
=

∂

∂t
+

1

ρ
ϕz

∂

∂x
− 1

ρ
ϕz

∂

∂z

1) Consider the balance approx with ϕ = s
∫ z
zρ+ ϕ′

fvz = b′x ⇒ v′ = ψx , b′ = fψz

and
D

Dt
ψx = −f

ρ
ϕ′z

D

Dt
ψz − sψx =

N2

fρ
ϕ′z

D

Dt
=

∂

∂t
+ sz

∂

∂x
+

1

ρ
ϕ′z

∂

∂x
− 1

ρ
ϕ′x

∂

∂z

Eliminating the ∂
∂t term gives a diagnostic equation for φ′ while eliminating the

terms on the rhs gives a prognostic equation for ψ.
2) For the linearized problem

D

Dt
→ ∂

∂t
+ sz

∂

∂x

show that the prognostic equation is just the QG PV equation (linearized). The
diagnostic equation for ψ is like the omega equation.

3) Unlike the QG approximation, the linear solution is not a solution to the nonlinear
problem.
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• Equilibration: For the QG model, the growing waves are an exact solution; the amplitude
will not stabilize. However, they can be unstable and the secondary instability can halt
the growth by feeding energy to neutral or stable waves (in the presence of friction). We’ll
return to this later as it may be important for oceanic BCI. We may also be able to stabilize
the waves by divergent heat fluxes, either ∂

∂yv
′b′ or ∂

∂zw
′b′. These feed back on the mean

buoyancy field and, by thermal wind, the mean zonal velocity field. Here we will adopt
the zonal mean which is relevant for the atmosphere but more questionable in the ocean
and assume ρ is constant.

∂

∂t
b = − ∂

∂y
[vb+ v′b′]− ∂

∂z
[wb+ w′b′]

Within the QG form, v = w = 0 and the w′b′ term is also negligible. So we can change
the mean density by divergence or convergence of the northward eddy heat flux. In the 2D
equations ∂

∂y = 0 and w = 0 so that the only active term is the divergence of the vertical
heat fluxes.
• Charney model

If we start from the isothermal, hydrostatic atmosphere with a basic state

u = U(ξ) , U(0) = 0; , φ = −U(ξ)

∫ y

f , b = −Uz

∫ y

f

with the boundary condition

gξs − U(ξs)

∫ y

f = 0 ⇒ ξs = 0

The linearized equations (using z instead of ξ and w instead of ω) become

∂

∂t
u+ U

∂

∂x
u+ wUz − fv = − ∂

∂x
φ

∂

∂t
v + U

∂

∂x
v + fu = − ∂

∂y
φ

⇒
∂

∂t
ζ + U

∂

∂x
ζ + βv − wyUz = f

1

ρ

∂

∂z
ρw

∂

∂z
φ = b

∂

∂x
u+

∂

∂y
v +

1

ρ

∂

∂z
ρw = 0

∂

∂t
b+ U

∂

∂x
b− fUzv + w(N2 −N2Uz

∫ y

f/g − Uzz

∫ y

f) = 0

boundary condition :

gξ′s − Uz(0)ξ′s

∫ y

f + φ(x, 0, t) = 0 & w =
∂

∂t
ξs

⇒
∂

∂t

[
φz −

N2

g
φ−

Uzz(0)
∫ y

f

g − Uz(0)
∫ y

f
φ

]
− Uz(0)fv = 0
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The QG form drops the −wys term in the vorticity, replaces f by f0, has b = f0
∂
∂zψ,

and drops the Uz

∫ y
f term compared to g (or in Joe’s analysis drops the entire term)

and Uzz

∫ y
f compared to N2. These are consistent with Ro = UzH/f0 and βL/f0 being

small. Then, eliminating the vertical velocity gives the QGPV eqn(
∂

∂t
+ U

∂

∂x

)
Q+

(
β − 1

ρ

∂

∂z
ρ
f20
N2

∂

∂z
U

)
ψx = 0

Q = ∇2ψ +
1

ρ

∂

∂z
ρ
f20
N2

∂

∂z
ψ

∂

∂t

(
ψz −

N2

g
ψ

)
− Uzψx = 0

For U = sz and an isothermal stratification, the PV gradient term is just β̃ = β+
sf2

0

N2H
and is constant so that(

∂

∂t
+ sz

∂

∂x

)
Q+ β̃ψx = 0 , Q = ∇2ψ +

f20
N2

(
∂2

∂z2
− 1

H

∂

∂z

)
ψ

∂

∂t

(
ψz −

N2

g
ψ

)
− sψx = 0

for solutions of the form exp(ık[x− ct] + ı`y)

(sz − c)Q+ β̃ψ = 0 , Q = Lψ −K2ψ

c(ψz −
N2

g
ψ) + sψ = 0

- Neutral solutions: These have c = 0 and are of the form Pn(z/H)e−az/H with a2 +
a−K2N2H2/f2 = 0. The gravest mode is P1 = z/H and has βnd = β̃N2H2/f2sH =
1 + 2a. The second is a quadratic plus a linear term with βnd = 2 + 4a.

- Charney found that slightly shorter waves were unstable – they have growth rates
order

√
K −Kn (nondimensional K ′s); Burger argued that all the waves except for

the neutral ones with K = 1
2

√
( b
n )2 − 1 are unstable; Miles showed that the longer

waves have growth rates order [Kn − K]3/2. The equation can be transformed into
the hypergeometric eqn.

- Numerics confirm the picture of high growth rates for the gravest mode short waves,
decreasing as K increases. The growth rates for the long waves indeed remain small.

• Charney-Stern Theorem: Consider the general zonal flow instability problem with U =
U(y, z). The perturbation PV equation is

∂

∂t
Q′ + U

∂

∂x
Q′ +Qy

∂

∂x
ψ = 0 , Qy = β − Uyy − LU
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and the boundary conditions (using the simpler anelastic form) are

∂

∂t
b′ + U

∂

∂x
b′ + Byψ′x = 0 @ z = 0, H with b′ = f0ψ

′
z , By = −fUz

We can rewrite these in terms of displacements of PV contours and theta contours on the
boundaries

Q′ = −ηQy , b′(0) = −η0By(0) , b′(H) = −ηHBy(H)

- Show that for all three
∂

∂t
η + U

∂

∂x
η = v′ = ψ′x

- From this, show that
∂

∂t

1

2
Qyη2 = −v′Q′

and
∂

∂t

1

2
By(0) η20 = −v′b′

with the overbar a zonal average. The growth of the waves depends in downgradient
fluxes of PV or heat on the boundaries.

- Now consider the integrated PV flux. Use

Q′ = v′x − u′y +
f0
ρ

∂

∂z

ρ

N2
b′

Show that

ρv′Q′ = ∇ ·
(
−ρu′v′ ŷ +

f0ρ

N2
v′b′ ẑ

)
the divergence of the Eliassen-Palm flux. For the PV flux integrate over y and z,
therefore ∫∫

ρv′Q′ =

∫
dy

[
f0ρ(H)

N(H)2
v′b′|H −

f0ρ(0)

N(0)2
v′b′|0

]
=

1

2

∂

∂t

∫
dy

[
−f0ρ(H)

N(H)2
By(H)η2H +

f0ρ(0)

N(0)2
By(0)η20

]
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- Combine this with the PV contours eqn to get

∂

∂t

1

2

∫
dy

[∫
dz
(
ρQyη2

)
− f0ρ(H)

N(H)2
By(H)η2H +

f0ρ(0)

N(0)2
By(0)η20

]
= 0

Therefore if

Qy(y, z) ≥ 0 and By(y,H) ≤ 0 and B0(y, 0) ≥ 0

everywhere, the flow is stable. Likewise if the opposite signs hold for all three.
- Think about barotropic instability, Eady, Charney.
- Consider this result in terms of PV sheets. Replace the boundary conditions ψz = f0b

with ψz = 0 and take

Q̃ = Q+
f0b0
N2(0)

δ(z − 0+)− f0bH
N2(H)

δ(z −H−)

Show that the integral of ρv′Q′ now vanishes and that the condition on the displace-
ments is just

∂

∂t

1

2

∫∫
ρQ̃y|η|2 = 0

and we can satisfy the necessary condition for stability using with the interior gradients
of the PV sheets or the PV sheets

Q̃y = Qy −
f0
N2
Byδ(z −H−) +

f0
N2
Byδ(z − 0+)

must change sign.
• Critical layers: For normal-mode form

η =
ψ′(y, z)

U(y, z)− c
exp(ık(x− ct)) + c.c.

- show

η2 = 2
|ψ′(y, z)|2

|U(y, z)− c|2
exp(2kcit)

and
∂

∂t

1

2
η2 =

2kci|ψ′(y, z)|2

|U(y, z)− c|2
exp(2kcit)

For a growing disturbance ci > 0, this is everywhere non-negative: the particles are
getting further and further away from their position in the undisturbed flow. Therefore
Q̃y must have positive and negative regions.
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- For neutral waves with c real, suppose there is a line zc(y) where U(y, zc) = c. In a
frame of reference moving with this speed

∂

∂t
η + (U − c) ∂

∂x′
η =

∂

∂t
η = v(y, zc) exp(ıkx′)

so that the displacements just grow linearly if v 6= 0. If Q̃y is non-zero, this implies
there will be a PV fluz at the critical layer which cannot be balanced elsewhere since
η2 is bounded everywhere else. We cannot have a neutal mode with a critical layer
unless Qy vanishes there or takes on different signs for different y’s (recalling that zc
is a function of y; this only applies when U has both vertical and horizontal shear).

- In the limit as ci → 0, we can use U − cr ∼ Uz(zc)(z − zc) and integrate across zc to
find

∂

∂t

1

2

∫ z+
c

z−
c

η2 =
2kπ|ψ′(y, zc)|2

|Uz(y, zc)|

The related downgradient flux of PV must be balanced by growth of η2 elsewhere
where the PV gradient is opposite to that in the critical layer.

- We avoided the critical layer issue previously by considering piecewise-constant Q
fields in the shear layer and the Eady problem. For these Qy is zero nearly everywhere.

Non-modal growth and superposition

• Consider growth of stable disturbances by superposition. Consider U = sz in the CONST
case but unbounded vertically. The perturbations will have PV anomalies

Q′ = A cos(kx+mz)

Show that
Q′ = A cos(k[x− szt] +mz) = A cos(kx+ [m− kst]z)

- Now invert to find ψ. Evaluate the KE 〈K2|ψ|2〉 and APE 〈(f20 /N2)|ψz|2 and the
total. Show that it can grow significantly as the shear makes the vorticity barotropic
and then decays again. This is the “Orr mechanism.’ ’Look for large time and possibly
large x solutions.

• In general if we have a perturbation equation

∂

∂t
Q′ + U

∂

∂x
Q′ + ψ′xQy

and we deal with perturbations of the form Q exp(ıkx) and use the Green’s function to
find ψ′ in terms of Q′

∂

∂t
Q′ + ık

∫
dydz [Uδ(y − y′)δ(z − z′) +Q(y, z)G(y, z|y′, z′)]Q′(y′, z′)

= 0
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If we discretize the Q′ field at points yi, zi and use a discrete form of the integral, we have

∂

∂t
Q′i + ıkMijQ

′
j = 0

For the normal modes, Q′ ∝ exp(−ıkct) we can see that the c values are the eigenvalues
of M.

- The general solution is
Q′i(t) = expm(−ıktMij)Q

′
j(0)

where this is a matrix exponential (expm). Show that this works in terms of the Taylor
series expansion of Qi(t).

- use the decomposition in terms of the eigenfunctions and eigenvalues

MZ = ZΩ ⇒ M = ZΩZ−1

where Ω is a diagonal matrix of the eigenvalues and the columns of Z are the associated
eigenvectors. This gives another representation of the matrix exponential

expm(−ıktM) = Z exp(−ıktΩ)Z−1

with the exponential of a diagonal matrix just being an ordinary Matlab/Octave
exponential of each element – in this case, just the diagonal elements. If any of the
eigenvalues have positive imaginary parts, they will rapidly dominate exp(−ıktΩ).
But even if all the eigenvalues are real, we can get growth when they are not widely
separated so that we can start with modes which are out of phase and amplify as they
superimpose.

- We can find the amplification in terms of the matrix norm

max (|Q′(t)|/|Q′(0)|) = ||expm(−ıktM)||

This shows that for the Eady problem in the neutral regime, we can get amplifications
of factors of 10 when close to the critical value, 2 or 3 further away.

• Another metric is the initial rate of amplification: what is the fastest a perturbation can
grow? You might think it’s the growth rate (or maximum growth rate if more than one
mode is growing), but it’s not.

- Why? Normal modes have to match the phase and amplitudes to keep the structure
coherent; but we can find initial structures which maximize amplification at t = 0 but
will not remain coherent.

- To make it quantitative, consider the “reactivity” (Neubert and Caswwll, 1997)

σr = max

[
1

|Q|
∂

∂t
|Q|
]
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Using |Q′|2 = QHQ where QH is the transpose of the complex conjugate (′ in Mat-
lab/Octave), show that this becomes

σr = max
QH 1

2 [−ıkM + ıkMH ]Q

QHQ

This is given by the largest eigenvalue of 1
2 [−ıkM + ıkMH ].

- show this is true in the generalized Eady problem by doing the optimazion directly
holding |Q| = 1.

- computing the reactivity shows that it can be several times the normal mode growth
rate and much more as the latter approaches zero.

Initial value problem

In wave problems, we tend to think of expanding in the normal modes, letting each
evolve, and then reconstituting the results. But if we consider the Eady (CONST) problem
as an example and want to consider the evolution of ψ0(x, z) or even ψ0(z) exp(ıkx),
problems arise. For the dynamical equation(

∂

∂t
+ z

∂

∂x

)
Q′ = 0 , Q′ =

(
∂2

∂z2
− k2

)
ψ = 0

the only normal modes are the two corresponding to growing or decaying waves or to the
neutral waves with phase speeds on either side of the mean of the shear flow depending
on the value of k. Clearly, these are not a complete set. Equally obviously, the initial
disturbance, unlike the normal modes, does not have Q′ = 0. We can solve the general
initial value problem using Laplace transforms (c.f. Case, 1960).
• We’ll consider an example with a potential interior reversal of PV gradient but ψz = 0
boundary conditions and exp(ıkx) perturbations

∂

∂t
Q′ + ıkUQ′ + ıkQyψ

′ = 0 , Q′ =
∂2

∂z2
ψ − k2ψ

- Take the Laplace transform q(s) =
∫∞
0
Q′ exp(−st)

sq + ıkUq + ıkQyp = Q′0(z) , q =
∂2

∂z2
p− k2p

so that [
∂2

∂z2
− k2 +

ıkQy

s+ ıkU

]
p =

Q′0(z)

s+ ıkU

- Write the solution using the Green’s function

p =

∫
dz′G(z, z′|s) Q′0(z′)

s+ ıkU(z′)
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and express G in terms of two solutions to the homogeneous equation

G(z, z′|s) =
1

W (p0, p1|s)
p0(z<|s)p1(z>|s)

z< = min(z, z′) , z> = max(z, z′)

with [
∂2

∂z2
− k2 +

ıkQy

s+ ıkU

]
pn = 0 ,

∂

∂z
p0(0) = 0 ,

∂

∂z
p1(H) = 0

with the Wronskian being

W (p0, p1|s) = p0
∂p1
∂z
− p1

∂p0
∂z

- Prove that W is independent of z.
- For the inversion

ψ(z, t) =
1

2πı

∫ ∞+a

−∞+a

ds estp(z|s)

with the contour taken to the right of the singularities. We have to close the contour
to the left for t > 0, so will get contributions from all the poles or branch points.
What are the singularities?

ψ(z, t) =
1

2πı

∫
dz′Q′0(z′)

∫ ∞+a

−∞+a

ds est
G(z, z′|s)
s+ ıkU(z′)

1) values of s where the Wronskian is zero. At these points, p0 and p1 are the same
solution, satisfying both boundary conditions. These are the normal modes with
s = −ıkc = −ıkcr + kci. Unstable modes have poles in the right half-plane and
their residues will contribute exponentially growing modes.

2) points on the imaginary axis where s = −ıkU(zs) but Qy(zs) 6= 0. Here p0 and
p1 are singular. But the singularity is order (z − ıs/k) ln(z − ıs/k) with the p’s
also having with a constant term at the singular point.

3) The point s = −ıkU(z0). Here we have a logarithmic singularity and a sim-
ple pole (from the constant term). The former gives ψ ∼ 1/t while the latter
gives oscillations corresponding to advection by the flow at the singular point
exp(ıkU(z′)t). Integrating these over z′ will, as in the case considered above, give
a signal decaying as 1/t.

4) For the Eady problem, the singular modes satisfy

Q′(z, t) = Q′(z, 0) exp(ıkzt)

Solving this (computer algebra!) for Q′ = sin(πz) shows that Q′ ∼ 1/t for large
t; the initial transients die out slowly. But they can grow substantially for short
times by the Orr mechanism above.
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Spatial-temporal growth

Although almost all stability computations are for zonal flow and normal modes or
at best wavenumber k, yet most atmospheric and oceanic disturbances are much more
localized in space and time.

If we consider the evolution of a localized initial disturbance in 1D

ψ(x, t) =

∫
dkA(k) exp(ıkx− ıΩ(k)t)

(ignoring the issues of different modes and singular modes). We look for large time and
possibly large x solutions

ψ(x, t) = lim
t→∞

∫
dkA(k) exp(ı[kU − Ω(k)]t)

with U = x/t.
- Deform the integration contour in the complex k plane to pass through the saddle

point ks such that U = dΩ/dk. Then

ψ(x, t)→ A(ks) exp (ı[ksU − Ω(ks)]t)

∫
dk′ exp

(
−ıtd

2Ω

dk2

∣∣∣
ks

k′2
)

The envelope will be growing at a rate

σ = =[Ω(ks)− Uks]

- We can define the gradients of Ω − Uk as follows: suppose we specify the system in
the frame moving at speed U as

∂

∂t
ψi = −ıkMijψj

Then ω is the eigenvalue of M with the largest imaginary part. Let its eigenvector be
z.

M(k, U)z = ωz ⇒ Mkz + Mzk = ωkz + ωzk

(subcripts meaing derivatives) From the left eigenfunction z+ satisfying z+M = ωz+,
then

z+Mkz = ωkz+z

- We scan through U and use a root finder to locate the saddle point dω/dk = 0. We
can then set the growth rate for that part of the pulse as =(ω).

- The Eady problem is marginal with respect to growth at the origin (U = 0) unless the
flow at that boundary is westward. For most problems, you tend to find “convective”
instability (growing downstream, decaying at a fixed point) rather than “absolute”
instability (growing at a fixed point).
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Non-zonal flows

The Arnold thm. generalizes for QG flows: the flow will be stable if

dΨ

dQ
≥ 0 &

dΨ

dB

∣∣∣
0
≥ 0 &

dΨ

dB

∣∣∣
H
≤ 0

everywhere. Again for zonal flows we can add translating coordinates or for circular flows,
a rotating system. For those interested in the Hamiltonian formulation and the nonlinear
versions, I’ll include an appendix; it shows that this gives stability to finite amplitude
disturbances.
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Equilibration or turbulence

We are going to focus on the zonally symmetric problem. First consider the general
setup (though we’ll revert to the Eady problem for simplicity).
• Form the mean and fluctuating PV equations

∂

∂t
q +

∂

∂y
v′q′ = F

∂

∂t
q′ + u

∂

∂x
q′ + v′qy +∇ · (u′q′)− ∂

∂y
v′q′ = F ′(

∂2

∂y2
+ L

)
u = β − qy(

∇2 + L
)
ψ′ = q′

and we’ve introduced forcing and damping terms. We pose it in a channel y = 0 to W .
- For weak waves, we can drop the terms quadratic in q′ in the fluctuation equation;

this is known as the “mean field approximation.” Then it becomes the linear equation

∂

∂t
q′ + u

∂

∂x
q′ + v′qy = F ′

But now the mean flow and mean PV gradient are altered by the diveregence of the
eddy PV flux.

- For growing waves, the eddy flux is downgradient, but it must vanish at the north
and south walls. If the PV gradient is positive, the flux will converge at the southern
wall (increasing the PV near there) and diverge at the north (decreasing it). The net
effect is to reduce the PV gradient. This applies for −θ at the upper boundary in the
Eady problem; at the lower boundary, the PV gradient and fluxes are reversed. In
both cases, the PV or thermal gradient is reduced and therefore the vertical shear is
also. The eddies are driving the mean towards a more stable state.

- In turn, the shift in the mean state reduces the growth rate; in the presence of dissi-
pation, the eddies can reach a neutral state in which the energy extracted from the
mean balances the dissipation, while the eddy fluxes, together with the mean forcing
and dissipation, set the final mean state.

• Eady example:
- Define the forcing of the mean top and bottom temperatures

∂

∂t
b+

∂

∂y
v′b′ = −r(b+ y)

∂

∂t
b′ + u

∂

∂x
b′ + by

∂

∂x
ψ′ = −rb′

- From the thermal variance equation

∂

∂t

1

2
b′2 + byv′b′ = −rb′2

14



we can see that the eddies must flux heat downgradient to get growth or, in the final
state, to balance losses. Consider the sketch of Eady instability; it shows the heat flux
is indeed downgradient.

- For the standard problem with b′(0) = θ0 sin(`y) exp(ıkx) + c.c.(
v′0
v′H

)
= ık

(
F0(0) FH(0)
F0(H) FH(H)

)(
θ0
θH

)
- To maximally simplify the analysis, let K = 2.0650 for which −F0(0) = FH(H) = 1

2
and −F0(H) = FH(0) = C = 0.12483. Let −U(0) = U(H) = 1

2 . Then the growth

rate is just σ = kC. Let ` = K/2 so that k =
√

3K/2. For this scale, show that the
growing eigenmode has θH = −ıθ0 — a 90o phase shift.

- Show that for θ0 = A
v′b′ = 2σ|A|2 sin2 `y

on the boundaries. From this

∂

∂t
b+ rb = −ry − 2σ`|A|2 sin 2`y

This equilbrates at

b = −y − 2σ`

r
|A|2 sin 2`y ⇒ by = −1− 4σ`2

r
|A|2 cos 2`y

The temperature gradient is indeed reduced in the center of the channel and increased
near the edge where, because of boundary condtions v′ = 0, it is not effective at driving
eddies.

- From the inversion equation for ψ, we find the correction to the zonal flow

u0 = −1

2
+ [F0(0|2`) + FH(0|2`)]4σ`

2

r
|A|2 cos 2`y

= −1

2
− [

1

2
− C]

4σ`2

r
|A|2 cos 2`y

- We still do not know the amplitude, however. We can estimate it as follows:
1) Since we’ve ignored wave-wave interactions, we have

b′(0) = θ0(y, t) exp(ıkx) + c.c.

2) The variance equation gives

∂

∂t

1

2
|b′(0)|2 + r|b′(0)|2 = −v′b′|0 by(0)

or
∂

∂t
|θ0|2 + 2r|θ0|2 = −(v0θ

∗
0 + v∗0θ0) by(0)
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3) To get a rough amplitude equation, use the lowest order form θ0 = A sin(`y) and
v0 = −ık( 1

2 + ıC)θ0 sin(`y) and integrate over y.

∂

∂t
|A|2 + 2r|A|2 = 2σ|A|2 +

8σ2`2

r
|A|4

∫
sin2 `y cos 2`y∫

sin2 `y

= 2σ|A|2 − 4σ2`2

r
|A|4

The amplitude equilibrates to |A|2 = (σ − r)r/2σ2`2.
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Generalized Eady model

We consider the case with Qy = 0 or

LU(z) = β , L =
1

ρ

∂

∂z
ρ
f20
N2

∂

∂z

Then the interior equation

∂

∂t
Q′ + U(z)

∂

∂x
Q′ + ψ′xQy + J(ψ′, Q′) = 0

has solutions with Q′ = 0. For exp(ık(x− ct) + ı`), we have

Lψ′ = |k|2ψ′ = K2ψ

The boundary conditions
Θy = −Uz , ψ′z = θ′

(factors of f being incorporated into the theta’s) when put in the conservation of θ on the
boundary give

∂

∂t
θ′ + U

∂

∂x
θ′ + ψ′xΘy + J(ψ′, θ′) = 0 ⇒ (U − c)ψz − Uzψ = 0

(dropping primes).
We can write the streamfunction in terms of the part forced by the lower boundary

and that forced by the upper boundary

ψ′ = θ0F0(z) + θHFH(z)

with

LF = K2F , F0z(0) = 1 , F0z(H) = 0 , FHz(0) = 0 , FHz(H) = 1

Then we can write the dynamical equation in matrix form(
U(0)− Uz(0)F0(0) −Uz(0)FH(0)
−Uz(H)F0(H) U(H)− Uz(H)FH(H)

)(
θ0
θH

)
= c

(
θ0
θH

)
• Necessary condition: M12M21 < 0. Since F0 < 0 and FH > 0 we must have

Uz(0)Uz(H) > 0

We can solve the LU equation

Uz =
β

f2
N2

ρ

∫ z

0

ρ+
ρ(0)N2

ρN2(0)
Uz(0)
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so that the shear at the top is

Uz(H) =
β

f2
N2(H)

ρ(H)

∫ H

0

ρ+
ρ(0)N2(H)

ρ(H)N2(0)
Uz(0)

The flow will be stable if

ρ(H)

N2(H)
Uz(0)Uz(H) = Uz(0)

β

f2

∫ H

0

ρ+
ρ(0)

N2(0)
Uz(0)2 < 0

or

− β

f2
N2(0)

ρ(0)

∫ H

0

ρ < Uz(0) < 0

Let us put that in terms of the net shear

U(H)− U(0) =
β

f2

∫ H

0

N2

ρ

∫ z

0

ρ+
ρ(0)Uz(0)

N2(0)

∫ H

0

N2

ρ

Multiplying the inequality by the coefficient of the Uz(0) gives

− β

f2

(∫ H

0

ρ

)∫ H

0

N2

ρ
< U(H)− U(0)− β

f2

∫ H

0

N2

ρ

∫ z

0

ρ < 0

or

− β

f2

∫ H

0

N2

ρ

(∫ H

0

ρ−
∫ z

0

ρ

)
< U(H)− U(0) <

β

f2

∫ H

0

N2

ρ

∫ z

0

ρ < 0

If we take the isothermal case with H the scale height, we have stability when

−1

e
β
N2H2

f2
< U(H)− U(0) < (e− 1)β

N2H2

f2

Since e− 1 = 1.7183 and 1/e = 0.36788 eastward shear can be much larger than westward
shear. For an 8 km scale height, NH/f = 1500 km. For β = 2e − 11 m−1s−1, we find
βN2H2/f2 = 45 m/s, and the bounds are −16 m/s < U(H) − U(0) < 77 m/s. For the
ocean, we note that the integral on the left weights the deep water N2 most heavily while
the one on the right weights the upper water column value, which is usually larger. So we
also expect westward shear will be less stable than eastward shear.
• Sufficient conditions? Is the necessary condition all you need assuming that K can be
arbitrarily small or large? If we look at the equations for F , we see that large K will give
a boundary-layer character, with the solutions decaying rapidly. Ie.,

F0 ∼ −
f

N(0)K
exp(−KN(0)z/f)
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implying the off diagonal terms are nearly zero and the eigenvalues are just the diagonal
terms and are real. Indeed, c ∼ U(0) or U(H) – the short waves are dominated by
advection. In terms of the discriminant

D = (M22 −M11)2 + 4M12M21

the last term is very small and the first term goes to [U(H)−U(0)]2 so that the D will be
positive.

The case of small K is trickier. We actually need two terms in the approximation to
F

F0 = −A0
1

K2
+ F̃0(z)

with
LF̃0 = −A0

Integrating this and applying the shear boundary condition gives

A0 =
ρ(0)f2

N2(0)
∫H

0
ρ

Using just the order K−2 terms in the matrix implies the determinant is 0 and the trace
is

Tr =
Uz(0)A0 − Uz(H)AH

K4

For the β = 0 case, the expression for the shear shows that the trace is also zero, so the
discriminant D = Tr2− 4Det = 0 and we need to go to higher order. This calculation will
show that D is negative all the way to zero wavenumber.

But, in fact, all we really need to do is prove that M22 −M11 passes through zero at
some K since D(K) will be negative there. Let’s take the case Uz(0), Uz(H), U(H) > 0
and U(0) = 0. Then

M22 −M11 = U(H)− Uz(H)FH(H)− U(0) + Uz(0)F0(0)

is clearly positive for large K when the F ’s vanish, but for small K becomes

M22 −M11 ∼ U(H)− Uz(H)AH/K
2 − U(0)− Uz(0)A0/K

2

which will become negative. Thus there will be a critical wavenumber at which

D = 4M12M21 < 0

and nearby wavenumbers will also be unstable.
- For the CONST case,

F0 = −cosh(K ′[H − z])
K ′ sinh(K ′H)

, FH =
cosh(K ′z)

K ′ sinh(K ′H)
, K ′ = KN/f

FH(H) = −F0(0) =
cosh(K ′H)

K ′ sinh(K ′H)

FH(0) = −F0(H) =
1

K ′ sinh(K ′H)
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