
Roadmap #4: Beyond QG

Frontogenesis

Fronts are regions of very rapid horizontal temperature change and, since the along-
front winds are still pretty geostrophic, strong wind shear. Their Rossby numbers fre-
quently become order one or larger, so we want to explore them as an example of non-QG
dynamics. We shall look at the problem of how fronts are generated using QG and then
semigeostrophic models.
• But first, examine what can cause intensification of the temperature gradient.

- From the thermodynamic equation, calculate the rate of increase of ∇|θ|2:
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- Split the tensor
∂uj

∂xi
into the trace times the identity (but that’s zero by continuity),

an antisymmetric part (related to the vorticity), and the rate-of-strain tensor, the
symmetric part.

- show that only the symmtric part affects the r.h.s. Therefore the gradient grows at a
rate given by the most negative eigenvalue of
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Since the trace is zero, the sum of the eigenvalues is zero; since the matrix is symmetric,
they are real, so you expect to have some positive and some negative values. The
negative values correspond to the direction where the θ contours are being pushed
close together, with the fluid between them being squirted out parallel to the contours.

For the QG system, this is the basic phenomenon: the gradient in θ grows exponentially
and the thermal wind implies the shear does also. For the full equations or the semi-
geostrophic eqns., the magnitude of the eigenvalue also increases, so that the growth is
super-exponential and the front becomes singular in a finite time.
• Now consider an example with u→ −Dx+ u(x, z, t), v → Dy + v(x, z, t), p→ fDxy −
1
2D

2(x2 + y2) + 1
2N

2z2 + p(x, z, t) and b→ N2z+ b in the Boussinesq model (constant N2
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will be used).
D
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- show that the angular momentum M = v + fx satisfies

D

Dt
M = −DM ⇒ D

Dt
M exp(Dt) = 0

- we already have conservation of temperature

D

Dt
(b+N2z) = 0 or

D

Dt
bT = 0

- we also conserve Ertel PV

q = (vx + f)(N2 + bz)− vzbx

prove this is still conserved with the equations above.
- note that

q =
∂(M, bT )

∂(x, z)

– 1/q represents the area between M and bT contours. Conservation of q implies that
the area of a patch formed by two M and two bT contours is fixed. The latter are
material lines, but the former are not.

• QG form
- Find the vertical vorticity eqn by ∂

∂x of the v eqn

D

Dt
ζ + wxvz = (f + ζ)wz , ζ = vx

In QG, ug = 0, ζ << f , and w ∂
∂z is ignored
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- The QG form of the u equation just gives geostrophy

fv = px = fψx
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- The hydrostatic and buoyancy equations give

b = pz = fψz , (
∂

∂t
−Dx ∂

∂x
)b+N2w = 0

in the QG limit. Combining these shows that

(
∂

∂t
−Dx ∂

∂x
)Q = 0 , Q =

∂2

∂x2
ψ + Lψ , L =

f2

N2

∂2

∂z2

- In the QG Eady-like problem, Q = 0 and the boundary temperature just behaves like

(
∂

∂t
−Dx ∂

∂x
)b = 0

If we start with b = b0 tanh(x/L), the solution is

b(x, 0, t) = b0 tanh(x exp(Dt)/L)

Thus a front (but not discontinuity) forms due to the large scale strain field.
- To examine the flow everywhere, assuming an unbounded system with constant N2,

we let x = X exp(−Dt), z = Z(f/N) exp(−Dt), ψ = Ψ exp(−Dt). The PV equation
and the boundary condition become

ΨXX + ΨZZ = 0 with ΨZ = b0(X)/N

Therefore Ψ and v = ΨX and b′ = NΨZ are time-independent in the X,Z coordinates
and simply contract vertically and horizontally with time. On the other hand, the
vorticity vx = exp(Dt)ΨXX grows exponentially with time. Note that if b0 is antisym-
metric around the origin, v will be symmetric and ζ antisymmetric: the front is not
tilted in the vertical. As an explicit, example take a sinusoidal boundary condition;
the solution (putting the squeezing into the wavenumbers rather than the coordinates)
is

b(x, 0, t) = b0 sin(Kx) , K = k exp(Dt)

⇒
b = b0 sin(kX) exp(−KzZ) , Kz = k(N/f) exp(Dt)

ψ = − b0
fKz

sin(Kx) exp(−Kzz)

v = − b0K
fKz

cos(Kx) exp(−Kzz)

ζ =
b0K

2

fKz
sin(Kx) exp(−Kzz)

- Most studies have a lid or variable N2(z); in that case, the transformation to Z cannot
be done and the v velocity will no longer be constant: in the case above, the shear is

3



very small initially, but it extends to great depths. On the other hand, the remarks
about symmetry remain true.

- For an analytic example with a lid, use

b(x, 0, t) = b0 sin(kx exp(Dt)) = b0 sin(Kx) , b(x,H, t) = 0

But this is worse:

v = − b0K
fKz

cos(Kx)
cosh(Kz[H − z])

sinh(KzH)

gives v(0) which blows up as t << 0. For small K, the vertical curvature is small, so
to match the dissimilar boundary conditions a large velocity is required. If, however,
we assume the initial b is the same on the top and bottom, then

b = b0 sin(Kx)
cosh(Kz[z −H/2])

cosh(KzH/2)

ψ =
b0
fKz

sin(Kx)
sinh(Kz[z −H/2])

cosh(KzH/2)
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2
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Now, as t→ −∞

v(x, 0) = − b0K
fKz

cos(Kx) tanh(KzH/2)→ −b0KH
2f

cos(Kx)

which vanishes. As t→ +∞,

v(x, 0)→ − b0K
fKz

cos(Kx)

For this case, the velocity reaches a limit, but the vorticity continues to grow expo-
nentially as the scale shrinks.

ζ(x, 0)→ b0K
2

fKz
sin(Kx)

• Non-QG: the full system includes a y-vorticity equation for ∇2φ with u = φz, w = −φx(
D

Dt
−D

)
∇2φ = fvz − bx(

D

Dt
+D

)
v = −fφz

D

Dt
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2
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∂

∂z
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- Show that a positive imbalance fvz > bx induces a flow which tends to reduce vz by
Coriolis torques and increase bx by vertical movement of the basic stratification.

• Semigeostrophic approx: This assumes the along-front scale is large and the cross-front
velocity u is small compared to v. Then v remains geostrophic and b is hydrostatic (still
with the N2z term factored out). We are actually assuming that the horizontal adjustment
process is extremely effective.

- Now
q

N2
− f = ψxx +

f2

N2
ψzz +

f

N2
(ψxxψzz − ψ2

xz)

The QG form has just the linear terms. This can also be written as

q

f
=
∂(Ψx,Ψz)

∂(x, z)
, Ψ = ψ + f

x2

2
+
N2

f

z2

2

which is the 2D Monge-Ampère equation (that actually does help because a fair
amount is known about its properties).

- Consider a constant PV case q = fN2. Then

ψxx +
f2

N2
ψzz +

f

N2
(ψxxψzz − ψ2

xz) = 0

at all times and we only need to worry about the boundary

D

Dt
ψz = 0

- But... The inversion is nonlinear and the advection of ψz depends on u also. We can
find the ageostrophic circulation from the omega equation

f
∂

∂z
[
D

Dt
v +Dv]− ∂

∂x
[
D

Dt
b] = −f2φzz −N2φxx

fJ(φz, v)−Dfvz −Dbx − J(φx, b) = f2φzz +N2φxx

f2φzz +N2φxx + fJ(φx, ψz) + fJ(ψx, φz) = −2Dbx

or
f(f + ψxx)φzz + (N2 + fψzz)φxx − 2fψxzφxz = −2Dfψxz

• Geostrophic coordinates: For constant PV

∂(M/f, bT )

∂(x, z)
= 1

so that the area between two M/f and two bT surfaces is preserved. We could try to use
these as new coordinates; however the first is not conserved.
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- So let’s just change the X coordinate to M/f = x+v/f and use the same Z = z coor-
dinate but with ∂

∂Z indicating the derivative at constant X (Hoskins and Bretherton,
1972). Then

∂

∂x
=
ζa
f

∂

∂X

where ζa is the absolute vorticity f + ζ. Applying this to v gives

ζa − f =
ζa
f
vX ⇒ ζa =

f

1− vX/f

The absolute vorticity can blow up in a finite time if vX → f .
- Consider the thermal wind

fMz = bx ⇒ f
∂(x,M)

∂(x, z)
=
∂(b, z)

∂(x, z)
⇒ f

∂(x,M)

∂(X,Z)
=

∂(b, Z)

∂(X,Z)

f det

(
1− vX/f f
−vZ/f 0

)
= fvZ = b′X

so we have thermal wind and

v = ΨX , b′ = fΨZ , Ψ = ψ + v2/f

- Note on Jacobians:

∂(A,B)

∂(X,Z)
=
∂(A,B)

∂(x, z)

∂(x, y)

∂(X,Z)
since

∂(A,B)

∂(X,Z)
= det

(
AX BX

AZ BZ

)
- For the q = fN2 case, the PV equation

∂(M/f, bT /N
2)

∂(X,Z)

/ ∂(x, z)

∂(X,Z)
= 1 or

∂(X, bT /N
2)

∂(X,Z)
=

∂(x, z)

∂(X,Z)

since M/f = X. The lhs is

1 + bZ/N
2 = 1 + Ψzz/N

2

and the rhs is

det

(
1− vX/f −vZ/f

0 1

)
= 1− vX/f = 1−ΨXX/f

Together, these give

ΨXX +
f2

N2
ΨZZ = 0

In geostrophic coordinates, the PV equation is linear and isomorphic to the QG PV
eqn.
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- To find b at the ground, use conservation of b(x, 0, t) and of XeDt (from the M
equation); together these imply

b(X, 0, t) = b(XeDt, 0, 0) = B0(XeDt)

again identical to the QG problem.
- So we solve the QG equations and find the fields as function of X,Z for a given t by

taking fΨZ(X, 0, t) = B0(XeDt) and inverting the linear PV equation just as in the
Eady edge wave problem (but without waves). Then we translate back using

x = X −ΨX(X,Z) , z = Z

and look at the solution in physical space.
- If we take the sinusoidal model in the semi-infinite domain

v = − b0
N

cos(KX) exp(−KzZ)

and we can draw curves of v(x, 0, t) easily.
• a Balance models of the general circulation of the ocean
• b Interpretation of atmospheric observations/analyses
• c Jets and eddies
• d Data assimilation
• e Loss of balance
• f Ripa’s thm
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