Roadmap #4: Beyond QG

Frontogenesis

Fronts are regions of very rapid horizontal temperature change and, since the along-
front winds are still pretty geostrophic, strong wind shear. Their Rossby numbers fre-
quently become order one or larger, so we want to explore them as an example of non-QG
dynamics. We shall look at the problem of how fronts are generated using QG and then
semigeostrophic models.

e But first, examine what can cause intensification of the temperature gradient.
- From the thermodynamic equation, calculate the rate of increase of V|6]?:
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- Split the tensor % into the trace times the identity (but that’s zero by continuity),
an antisymmetric f)art (related to the vorticity), and the rate-of-strain tensor, the
symmetric part.

- show that only the symmtric part affects the r.h.s. Therefore the gradient grows at a
rate given by the most negative eigenvalue of
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Since the trace is zero, the sum of the eigenvalues is zero; since the matrix is symmetric,
they are real, so you expect to have some positive and some negative values. The
negative values correspond to the direction where the 6 contours are being pushed
close together, with the fluid between them being squirted out parallel to the contours.
For the QG system, this is the basic phenomenon: the gradient in 6 grows exponentially
and the thermal wind implies the shear does also. For the full equations or the semi-
geostrophic eqns., the magnitude of the eigenvalue also increases, so that the growth is
super-exponential and the front becomes singular in a finite time.
e Now consider an example with v — —Dx + u(zx, z,t), v — Dy +v(z, z,t), p — fDzxy —
3D?(z? +y?) + $N?22 4+ p(z, z,t) and b — N?z + b in the Boussinesq model (constant N2



will be used).
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- show that the angular momentum M = v 4 fx satisfies
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- we already have conservation of temperature
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- we also conserve Ertel PV
q=(vz+ [)(N? +b.) — v:bs

prove this is still conserved with the equations above.

- note that
qg= 8(M7 bT)

0(zx, z)

— 1/q represents the area between M and by contours. Conservation of ¢ implies that
the area of a patch formed by two M and two by contours is fixed. The latter are
material lines, but the former are not.

e QG form
- Find the vertical vorticity eqn by % of the v eqn
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In QG, uy =0, ( << f, and w% is ignored
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- The QG form of the u equation just gives geostrophy
f UV =DPx = f ¢x
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- The hydrostatic and buoyancy equations give
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in the QG limit. Combining these shows that
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- In the QG Eady-like problem, ) = 0 and the boundary temperature just behaves like

If we start with b = by tanh(x/L), the solution is
b(x,0,t) = by tanh(z exp(Dt)/L)

Thus a front (but not discontinuity) forms due to the large scale strain field.

- To examine the flow everywhere, assuming an unbounded system with constant N2,
we let x = X exp(—Dt), z = Z(f/N)exp(—Dt), ¥ = ¥exp(—Dt). The PV equation
and the boundary condition become

Uyx +Vyz,=0 with ¥y = bO(X)/N

Therefore ¥ and v = ¥ x and b/ = NV 4 are time-independent in the X, Z coordinates
and simply contract vertically and horizontally with time. On the other hand, the
vorticity v, = exp(Dt)¥ x x grows exponentially with time. Note that if by is antisym-
metric around the origin, v will be symmetric and ¢ antisymmetric: the front is not
tilted in the vertical. As an explicit, example take a sinusoidal boundary condition;
the solution (putting the squeezing into the wavenumbers rather than the coordinates)

is
b(x,0,t) = bpsin(Kz) , K =kexp(Dt)

b jbo sin(kX)exp(—K.Z) , K. = k(N/f)exp(Dt)
= — fz(éz sin(K ) exp(—K.2)

0= —;‘}f cos(K) exp(—K.2)

¢ = b}’[ff sin(Kz) exp(— K. 2)

- Most studies have a lid or variable N?(z); in that case, the transformation to Z cannot
be done and the v velocity will no longer be constant: in the case above, the shear is



very small initially, but it extends to great depths. On the other hand, the remarks
about symmetry remain true.
- For an analytic example with a lid, use

b(x,0,t) = bgsin(kx exp(Dt)) = bosin(Kz) , b(x,H,t)=0

But this is worse:

bo K cosh(K,[H — z])
— cos(Kx)—

fK, sinh(K,H)
gives v(0) which blows up as t << 0. For small K, the vertical curvature is small, so
to match the dissimilar boundary conditions a large velocity is required. If, however,
we assume the initial b is the same on the top and bottom, then

cosh(K,[z — H/2])

v =

b = by sin(Kx)

cosh(K, H/2)
Now, as t —+ —o0
v(z,0) = — bkt cos(K ) tanh(K,H/2) — _bKH cos(Kx)

fE 2f
which vanishes. As t — +oo,
bo K

z

v(z,0) —» —

cos(Kx)

For this case, the velocity reaches a limit, but the vorticity continues to grow expo-
nentially as the scale shrinks.
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e Non-QG: the full system includes a y-vorticity equation for V2¢ with u = ¢,, w = —¢,
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- Show that a positive imbalance fv, > b, induces a flow which tends to reduce v, by
Coriolis torques and increase b, by vertical movement of the basic stratification.

e Semigeostrophic approx: This assumes the along-front scale is large and the cross-front
velocity u is small compared to v. Then v remains geostrophic and b is hydrostatic (still
with the N2z term factored out). We are actually assuming that the horizontal adjustment
process is extremely effective.

- Now )
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The QG form has just the linear terms. This can also be written as
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which is the 2D Monge-Ampere equation (that actually does help because a fair
amount is known about its properties).
- Consider a constant PV case ¢ = fN?. Then
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wwac + m¢zz + m(@bwmd]zz - @biz) =0

at all times and we only need to worry about the boundary
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- But... The inversion is nonlinear and the advection of 1, depends on u also. We can
find the ageostrophic circulation from the omega equation

f—[—U + DU] - _QL‘[_b] = _f2¢zz - N2¢ZECL‘

fJ(Cbz,U) - vaz - Dbx - J(¢x:b) = f2¢zz +N2¢xx
[2bez 4+ N2Guo + [T (0, 002) + I (Y, 62) = —2D0,

or

f(f + wxm)gbzz + (N2 + f¢zz)¢mx - 2f¢xz¢a:z = _2Df¢mz
e Geostrophic coordinates: For constant PV

6(]\J/fv bT)

d(x, 2) =1

so that the area between two M/f and two bp surfaces is preserved. We could try to use
these as new coordinates; however the first is not conserved.



- So let’s just change the X coordinate to M/f = x+v/f and use the same Z = z coor-
dinate but with % indicating the derivative at constant X (Hoskins and Bretherton,
1972). Then
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where (, is the absolute vorticity f + (. Applying this to v gives
o= f=0x = =t

f 1—vx/f

The absolute vorticity can blow up in a finite time if vy — f.
- Consider the thermal wind

B Iz, M)  0(b,z2)
fMe=b: = f oz,z)  O(z,2) -/

fclt(1 v/ s £>=fvzz X

so we have thermal wind and

d(x, M)  d(b,Z)
(X, 2)  0(X,Z2)

v=Ux , V=fUy , U=49+0%/f

- Note on Jacobians:

8(A7 B) — 8(14; B) 8(3:,3;) since a(Aa B) — det AX BX
0X,Z) O(x,z) 0(X,Z) (X, 2) Az Bz
- For the ¢ = fN? case, the PV equation
HMILb /N  0) A/ _ D)
o(X o0X,z) 90X, 2)

since M/f = X. The lhs is
1+by/N* =141V, /N>

and the rhs is

det (170X ) g =1

Together, these give
2

Uxx + %\PZZ =0

In geostrophic coordinates, the PV equation is linear and isomorphic to the QG PV
eqn.



- To find b at the ground, use conservation of b(z,0,t) and of XeP? (from the M
equation); together these imply

b(X,0,t) = b(XeP?,0,0) = By(XeP?)

again identical to the QG problem.

- So we solve the QG equations and find the fields as function of X, Z for a given ¢ by
taking fUz(X,0,t) = Bo(XeP?) and inverting the linear PV equation just as in the
Eady edge wave problem (but without waves). Then we translate back using

r=X-VUx(X,2), z=Z

and look at the solution in physical space.
- If we take the sinusoidal model in the semi-infinite domain

b
v = _NO cos(KX)exp(—K,Z)

and we can draw curves of v(x,0,t) easily.
e a Balance models of the general circulation of the ocean
e b Interpretation of atmospheric observations/analyses
e ¢ Jets and eddies
e d Data assimilation
e ¢ Loss of balance
e f Ripa’s thm



