
Thermodynamics of a fluid

Entropy equation

We wish to write the entropy equation

T
DS

Dt
= Q

in terms of Dp/Dt and Dρ/Dt only. However, the easiest way to do this is to begin with
the equation for temperature and pressure changes. If we take the entropy to be a function
of temperature and pressure, S = S(T, p), we have
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where the subscripts indicate the quantity held fixed. We need expressions for
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The first of these quantities can be written in terms of the specific heat at constant pressure
cp:
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The heat added at constant pressure, TdS, is equal to cp times the temperature change
dT . The subscript on the specific heat is not a derivative.

The second quantity can be rewritten in terms of the equation of state — a relationship
between the specific volume, the temperature and the pressure — α = α(T, p) by using a
“Maxwell” relationship. From the internal energy equation

de = TdS − pdα

we have
d[e− TS + pα] = TdS − pdα − TdS − SdT + pdα+ αdp

= −SdT + αdp

which is the equation for the Gibbs’ free energy, G = e− TS + pα, we find
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Cross differentiating these two implies
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We use subscripts for derivatives of α(T, p) since there is no ambiguity about which quan-
tities are held constant. These derivatives are determined from the equation of state. Thus
we have the second required derivative.

Putting (2) and (3) in (1) yields
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From this, we can readily find the adiabatic (Q = 0, implying S is constant) change in
temperature with pressure:

(

∂T

∂p

)

S

=
TαT

cp

and, by using the hydrostatic relation,
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For a perfect gas, TαT = α, and the adiabatic temperature gradient is just −g/cp.
We now rewrite (4) in terms of density and pressure as the basic variables. For

ρ = ρ(T, p) we have
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This is written in terms of the speed of sound
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with the speed of sound being defined by
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We can replace the equation of state by relationships c2s(p, ρ), ρT (p, ρ) to complete our
dynamical equations:
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in the five variables, u, v, w, p, ρ.

Notes

Speed of sound: In the case of a perfect gas, the equation of state ρ = p/RT implies
that
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In terms of the basic variables, c2s = γp/ρ.
General relationship for specific heats: If we combine (4) with an equation for specific

volume changes
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Thus, if volume is held fixed, the relationship between temperature changes and heat added
implies
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In the perfect gas case, this gives cv = cp −R.
Entropy: The existence of an entropy state function is more difficult to demonstrate

for a general fluid. See texts on statistical mechanics; e.g. Reif.
Potential Temperature: The potential temperature θ evolves according to
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But the potential temperature can be defined as the solution to
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subject to the condition θ(pref , T ) = T , so that
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