Thermodynamics of a fluid

Entropy equation
We wish to write the entropy equation

T2 —
Dt @

in terms of Dp/Dt and Dp/Dt only. However, the easiest way to do this is to begin with
the equation for temperature and pressure changes. If we take the entropy to be a function
of temperature and pressure, S = S(T,p), we have
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where the subscripts indicate the quantity held fixed. We need expressions for
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The first of these quantities can be written in terms of the specific heat at constant pressure
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The heat added at constant pressure, T'dS, is equal to ¢, times the temperature change
dT'. The subscript on the specific heat is not a derivative.

The second quantity can be rewritten in terms of the equation of state — a relationship
between the specific volume, the temperature and the pressure — a = a7, p) by using a
“Maxwell” relationship. From the internal energy equation
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we have
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which is the equation for the Gibbs’ free energy, G = ¢ — T'S + pa, we find
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Cross differentiating these two implies
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We use subscripts for derivatives of (T, p) since there is no ambiguity about which quan-
tities are held constant. These derivatives are determined from the equation of state. Thus
we have the second required derivative.
Putting (2) and (3) in (1) yields
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From this, we can readily find the adiabatic (@ = 0, implying S is constant) change in

temperature with pressure:
<6T> . TOéT
/s Cp

and, by using the hydrostatic relation,
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For a perfect gas, Tar = «, and the adiabatic temperature gradient is just —g/c,.

We now rewrite (4) in terms of density and pressure as the basic variables. For
p = p(T,p) we have

Dp DT+ Dp
Dt "Dt TP Dr
TozT& Dp

:/)Ta‘i‘PT T Pr ¢
_Q p+T\ Dp
T Cp ter cpp?) Dt

This is written in terms of the speed of sound
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with the speed of sound being defined by
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We can replace the equation of state by relationships c2(p, p), pr(p, p) to complete our
dynamical equations:
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in the five variables, u, v, w, p, p.

Notes
Speed of sound: In the case of a perfect gas, the equation of state p = p/RT implies
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In terms of the basic variables, ¢ = vp/p.
General relationship for specific heats: If we combine (4) with an equation for specific

volume changes
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and eliminate the pressure changes term, we find
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Thus, if volume is held fixed, the relationship between temperature changes and heat added
implies
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In the perfect gas case, this gives ¢, = ¢, — R.
Entropy: The existence of an entropy state function is more difficult to demonstrate
for a general fluid. See texts on statistical mechanics; e.g. Reif.
Potential Temperature: The potential temperature 6 evolves according to
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But the potential temperature can be defined as the solution to
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subject to the condition (pyer,T) =T, so that
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using (4).



