Flow over topography

Consider the following QG form for depth $H-h^{\prime}$

$$
\begin{aligned}
\frac{\partial}{\partial t} q+\mathbf{u} \cdot \nabla q & =0 \\
\mathbf{u} & =\hat{\mathbf{z}} \times \nabla \psi \\
q & =\nabla^{2} \psi+\beta y+\frac{f_{0}}{H} h^{\prime}
\end{aligned}
$$

For steady flow

$$
q=Q(\psi)
$$

and for an upstream flow $\psi \rightarrow-U y$ and $h^{\prime}=0$, we have

$$
Q(\psi)=-\frac{\beta}{U} \psi
$$

which holds on all streamlines communicating with ∞. Substituting

$$
\nabla^{2} \psi^{\prime}+\frac{\beta}{U} \psi^{\prime}=-\frac{f_{0}}{H} h^{\prime}
$$

with $\psi=-U y+\psi^{\prime}$. Note that solutions to this linear equation will still be solutions to the full problem.

We will deal with a simple case in a channel with width W

$$
h^{\prime}=h(x) \sin \ell y \quad, \quad \ell=\frac{\pi}{W}
$$

and

$$
\psi^{\prime}=\psi^{\prime}(x) \sin \ell y
$$

Then

$$
\mathcal{L} \psi^{\prime}=-\frac{f_{0}}{H} h^{\prime}
$$

with the operator

$$
\mathcal{L}=\frac{\partial^{2}}{\partial x^{2}}-\ell^{2}+\frac{\beta}{U}
$$

Greens' functions

We can solve this kind of problem by defining

$$
\mathcal{L} G\left(x \mid x^{\prime}\right)=\delta\left(x-x^{\prime}\right)
$$

giving

$$
\psi^{\prime}=-\int d x^{\prime} G\left(x \mid x^{\prime}\right) \frac{f_{0}}{H} h^{\prime}\left(x^{\prime}\right)
$$

For very narrow topography

$$
\psi^{\prime} \simeq-\frac{f_{o}}{H} A G\left(x \mid x^{\prime}\right)
$$

where $A=\int d x^{\prime} h^{\prime}\left(x^{\prime}\right)$ being the area under the ridge. So G gives us a pretty good idea of the response.

Because the operator is second order, G must be continuous at $x=x^{\prime}$ but its first derivative will not be. With this operator

$$
G^{\prime}\left(x^{\prime}+\epsilon, x^{\prime}\right)-G^{\prime}\left(x^{\prime}-\epsilon, x^{\prime}\right) \rightarrow 1
$$

The Greens' function can be written in terms of a solution $\phi^{+}(x)$ which satisfies the boundary condition as $x \rightarrow \infty$ and $\phi^{-}(x)$ for the left boundary condition. Then

$$
G\left(x \mid x^{\prime}\right)=G_{0} \begin{cases}\phi^{-}(x) \phi^{+}\left(x^{\prime}\right) & x<x^{\prime} \\ \phi^{-}\left(x^{\prime}\right) \phi^{+}(x) & x>x^{\prime}\end{cases}
$$

and applying the matching condition on the derivative gives

$$
G_{0}=1 /\left[\phi^{-} \frac{\partial}{\partial x} \phi^{+}-\phi^{+} \frac{\partial}{\partial x} \phi^{-}\right]
$$

if $U<0$ we have

$$
\phi^{ \pm}=\exp (\mp k x)
$$

with

$$
k=\sqrt{\ell^{2}+\frac{\beta}{U}}
$$

and

$$
G=-\frac{1}{2 k} \exp \left(-k\left|x-x^{\prime}\right|\right)
$$

But for $U>0$ there can be sinusoidal waves with

$$
k=\sqrt{\frac{\beta}{U}-\ell^{2}}
$$

and

$$
\phi^{-}=0 \quad, \quad \phi^{+}=\sin (k x)
$$

giving

$$
G\left(x \mid x^{\prime}\right)= \begin{cases}0 & x<x^{\prime} \\ \frac{1}{k} \sin k\left(x-x^{\prime}\right) & x>x^{\prime}\end{cases}
$$

and we have a downstream lee wave with

$$
\psi=-\frac{f_{0} A}{H k} \sin k x
$$

Lee wave

Why the asymmetry? Why not sines or cosines fro $x<x^{\prime}$ as well? Here we cannot apply the boundary condition $\psi^{\prime} \rightarrow 0$; we need a radiation condition. No energy should be coming in from $-\infty$ and it should be going out at $+\infty$.

Group velocity

$$
\omega=U k-\frac{\beta k}{k^{2}+\ell^{2}}
$$

gives

$$
c_{g}=U+\beta \frac{k^{2}-\ell^{2}}{\left(k^{2}+\ell^{2}\right)^{2}}
$$

(westward for long waves, eastward for short waves when $U=0$). For the stationary wave, though

$$
c_{g}=U+U \frac{k^{2}-\ell^{2}}{k^{2}+\ell^{2}}=U \frac{2 k^{2}}{k^{2}+\ell^{2}}>0
$$

So waves on the left side would not satisfy the radiation condition.

Initial value problem

For the linearized initial value problem

$$
\frac{\partial}{\partial t} q^{\prime}+\frac{\partial}{\partial x}\left[U q^{\prime}+\beta \psi^{\prime}+U \frac{f_{0} h^{\prime}}{H}\right]=0
$$

with

$$
\left[\frac{\partial^{2}}{\partial x^{2}}-\ell^{2}\right] \psi^{\prime}=q^{\prime}
$$

If we write the Laplace transform solution

$$
\hat{q}(x)=\int_{0}^{\infty} e^{-s t} q(x, t)
$$

then

$$
s \hat{q}+\frac{\partial}{\partial x}[U \hat{q}+\beta \hat{\psi}]=-\frac{1}{s} U \frac{f_{0} h^{\prime}}{H}
$$

Note that this is very similar to adding Rayleigh friction

$$
\frac{\partial}{\partial t} q^{\prime}+\frac{\partial}{\partial x}\left[U q^{\prime}+\beta \psi^{\prime}+U \frac{f_{0} h^{\prime}}{H}\right]=-r q^{\prime}
$$

The waves must be damped away from the topography (or as $\mathbf{x} \mid \rightarrow \infty$ for finite time).
So what do damped waves look like away from the forcing $(U>0)$? We have

$$
\imath k\left[U-\frac{\beta}{k^{2}+\ell^{2}}\right]=-r=\imath \omega(k)
$$

For small $r, k=k_{0}+\delta k$ and

$$
\imath c_{g} \delta k=-r \quad \Rightarrow \quad \delta k=\imath r / c_{g}
$$

So the waves will decay towards positive $x: \exp (\imath \delta k x) \simeq \exp \left(-x r / c_{g}\right)$. That's why we cannot have sinusoidal solutions upstream of the topography.

