
Flow over topography
Consider the following QG form for depth H − h′

∂

∂t
q + u · ∇q = 0

u = ẑ×∇ψ

q = ∇2ψ + βy +
f0
H
h′

For steady flow
q = Q(ψ)

and for an upstream flow ψ → −Uy and h′ = 0, we have

Q(ψ) = − β
U
ψ

which holds on all streamlines communicating with ∞. Substituting

∇2ψ′ +
β

U
ψ′ = −f0

H
h′

with ψ = −Uy + ψ′. Note that solutions to this linear equation will still be solutions to
the full problem.

We will deal with a simple case in a channel with width W

h′ = h(x) sin `y , ` =
π

W

and
ψ′ = ψ′(x) sin `y

Then

Lψ′ = −f0
H
h′

with the operator

L =
∂2

∂x2
− `2 +

β

U
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Greens’ functions

We can solve this kind of problem by defining

LG(x|x′) = δ(x− x′)
giving

ψ′ = −
∫
dx′G(x|x′)f0

H
h′(x′)

For very narrow topography

ψ′ ' −fo
H
AG(x|x′)

where A =
∫
dx′h′(x′) being the area under the ridge. So G gives us a pretty good idea of

the response.
Because the operator is second order, G must be continuous at x = x′ but its first

derivative will not be. With this operator

G′(x′ + ε, x′)−G′(x′ − ε, x′)→ 1

The Greens’ function can be written in terms of a solution φ+(x) which satisfies the
boundary condition as x→∞ and φ−(x) for the left boundary condition. Then

G(x|x′) = G0

{
φ−(x)φ+(x′) x < x′

φ−(x′)φ+(x) x > x′

and applying the matching condition on the derivative gives

G0 = 1
/[

φ−
∂

∂x
φ+ − φ+ ∂

∂x
φ−
]

if U < 0 we have
φ± = exp(∓kx)

with

k =

√
`2 +

β

U
and

G = − 1

2k
exp(−k|x− x′|)

But for U > 0 there can be sinusoidal waves with

k =

√
β

U
− `2

and
φ− = 0 , φ+ = sin(kx)

giving

G(x|x′) =

{
0 x < x′
1
k sin k(x− x′) x > x′

and we have a downstream lee wave with

ψ = −f0A
Hk

sin kx
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Lee wave

Why the asymmetry? Why not sines or cosines fro x < x′ as well? Here we cannot
apply the boundary condition ψ′ → 0; we need a radiation condition. No energy should
be coming in from −∞ and it should be going out at +∞.

Group velocity

ω = Uk − βk

k2 + `2

gives

cg = U + β
k2 − `2

(k2 + `2)2

(westward for long waves, eastward for short waves when U = 0). For the stationary wave,
though

cg = U + U
k2 − `2

k2 + `2
= U

2k2

k2 + `2
> 0

So waves on the left side would not satisfy the radiation condition.

Initial value problem

For the linearized initial value problem

∂

∂t
q′ +

∂

∂x

[
Uq′ + βψ′ + U

f0h
′

H

]
= 0

with [
∂2

∂x2
− `2

]
ψ′ = q′

If we write the Laplace transform solution

q̂(x) =

∫ ∞
0

e−stq(x, t)

then

sq̂ +
∂

∂x

[
Uq̂ + βψ̂

]
= −1

s
U
f0h
′

H
Note that this is very similar to adding Rayleigh friction

∂

∂t
q′ +

∂

∂x

[
Uq′ + βψ′ + U

f0h
′

H

]
= −rq′

The waves must be damped away from the topography (or as x| → ∞ for finite time).
So what do damped waves look like away from the forcing (U > 0)? We have

ık

[
U − β

k2 + `2

]
= −r = ıω(k)

For small r, k = k0 + δk and

ıcgδk = −r ⇒ δk = ır/cg

So the waves will decay towards positive x: exp(ıδkx) ' exp(−xr/cg). That’s why we
cannot have sinusoidal solutions upstream of the topography.
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