Flow over topography
Consider the following QG form for depth H — b’
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For steady flow
q= Q)

and for an upstream flow ) — —Uy and h' = 0, we have
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which holds on all streamlines communicating with co. Substituting
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with ¢» = —Uy + ¢’. Note that solutions to this linear equation will still be solutions to
the full problem.

We will deal with a simple case in a channel with width W
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Greens’ functions
We can solve this kind of problem by defining
LG(z|z") = §(x — 2')
giving
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For very narrow topography
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where A = [ da'h/(2') being the area under the ridge. So G gives us a pretty good idea of
the response.
Because the operator is second order, G must be continuous at x = x’ but its first
derivative will not be. With this operator
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The Greens’ function can be written in terms of a solution ¢+ (x) which satisfies the
boundary condition as  — oo and ¢~ (x) for the left boundary condition. Then
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and applying the matching condition on the derivative gives
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if U < 0 we have
¢~ = exp(Tkz)
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But for U > 0 there can be sinusoidal waves with
B
k== —1/¢2
U
and
¢~ =0 , ¢ =sin(kx)
giving
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and we have a downstream lee wave with
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Lee wave

Why the asymmetry? Why not sines or cosines fro x < x’ as well? Here we cannot
apply the boundary condition ¢’ — 0; we need a radiation condition. No energy should
be coming in from —oo and it should be going out at +oc.

Group velocity
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(westward for long waves, eastward for short waves when U = 0). For the stationary wave,
though
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So waves on the left side would not satisfy the radiation condition.
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Initial value problem

For the linearized initial value problem
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If we write the Laplace transform solution
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Note that this is very similar to adding Rayleigh friction
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The waves must be damped away from the topography (or as x| — oo for finite time).
So what do damped waves look like away from the forcing (U > 0)? We have
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For small r, k = kg + 0k and
gk = —r = dk=uw/c,

So the waves will decay towards positive z: exp(idkz) =~ exp(—zr/cy). That’s why we
cannot have sinusoidal solutions upstream of the topography.



